Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
J Biomater Sci Polym Ed ; : 1-18, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31724490


Biological modifications of the silk fibroin (silk) material have broad applications in textiles, biomedical materials and other industrial materials. It is economical to incorporate nanoparticles to the biosynthesis of silk fibroin by adding them to silkworm larval diets. This strategy may result in the rapid stable production of modified silk. Glucose-coated silver nanoparticles (AgNPs) were used to improve the AgNPs' biocompatibility, and the AgNPs were efficiently incorporated into silk by feeding. Larvae fed with AgNPs produced silk with significantly improved antibacterial properties and altered silk secondary structures. Both positive and negative effects on the growth and synthesis of silk proteins were observed after different AgNPs doses. Larvae feeding with low concentration of 0.02% and medium 0.20% AgNPs have greater transfer efficiencies of AgNPs to silk compared with feeding high concentration of 2.00% AgNPs. In addition, the elongation and tensile strength of the produced silk fibers were also significantly increased, with greater mammalian cell compatibility. The appropriate AgNPs concentration in the diet of silkworms can promote the synthesis of silk proteins, enhance their mechanical properties, improve their antibacterial property and inhibit the presence of Gram-negative bacteria.

Brain Imaging Behav ; 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31468373


As a relay center between the cerebral cortex and various subcortical brain areas, the thalamus is repeatedly associated with the dysfunction of brain-gut interaction in patients with irritable bowel syndrome (IBS). However, the regional morphological alterations of the thalamus in IBS are not well defined. We acquired structural magnetic resonance data from 34 patients with IBS and 34 demographically similar healthy subjects. Data processing was performed using FMRIB's Integrated Registration and Segmentation Tool (FIRST). Volumetric analysis and surface-based vertex analysis were both carried out to characterize the morphology of the thalamus and other subcortical structures. Our results suggested that the majority (31 cases) of the patients with IBS had diarrhea-predominant symptoms. Volumetric analysis revealed a larger normalized volume of the right thalamus and left caudate nucleus in patients with IBS than in healthy controls. Surface analysis indicated that the difference arose mainly from the laterodorsal nucleus of the right thalamus, and the body of the left caudate nucleus. In addition, patients with IBS had different hemispheric asymmetries of the thalamus (rightward) and caudate nucleus (leftward) from controls (leftward for the thalamus and rightward for the caudate nucleus). In general, our results indicated that patients with diarrhea-predominant IBS had enlarged thalamus and caudate nucleus volumes, as well as altered hemispheric asymmetries of these two structures, compared with healthy controls. The neuroimaging evidence of these structural alterations helps clarify the underlying pathophysiology of diarrhea-predominant IBS.

PLoS Biol ; 17(6): e3000313, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31185010


Blood-brain barrier (BBB) defects and cerebrovascular dysfunction contribute to amyloid-ß (Aß) brain accumulation and drive Alzheimer disease (AD) pathology. By regulating vascular functions and inflammation in the microvasculature, a disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) plays a significant protective effect in atherosclerosis and stroke. However, whether ADAMTS13 influences AD pathogenesis remains unclear. Using in vivo multiphoton microscopy, histological, behavioral, and biological methods, we determined BBB integrity, cerebrovascular dysfunction, amyloid accumulation, and cognitive impairment in APPPS1 mice lacking ADAMTS13. We also tested the impact of viral-mediated expression of ADAMTS13 on cerebrovascular function and AD-like pathology in APPPS1 mice. We show that ADAMTS13 deficiency led to an early and progressive BBB breakdown as well as reductions in vessel density, capillary perfusion, and cerebral blood flow in APPPS1 mice. We found that deficiency of ADAMTS13 increased brain plaque load and Aß levels and accelerated cerebral amyloid angiopathy (CAA) by impeding BBB-mediated clearance of brain Aß, resulting in worse cognitive decline in APPPS1 mice. Virus-mediated expression of ADAMTS13 attenuated BBB disruption and increased microvessels, capillary perfusion, and cerebral blood flow in APPPS1 mice already showing BBB damage and plaque deposition. These beneficial vascular effects were reflected by increase in clearance of cerebral Aß, reductions in Aß brain accumulation, and improvements in cognitive performance. Our results show that ADAMTS13 deficiency contributes to AD cerebrovascular dysfunction and the resulting pathogenesis and cognitive deficits and suggest that ADAMTS13 may offer novel therapeutic opportunities for AD.

Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/fisiologia , Circulação Cerebrovascular/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Disfunção Cognitiva , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
Front Cell Neurosci ; 12: 205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061815


Background: Growth differentiation factor 11 (GDF11), a member of transforming growth factor-ß (TGF-ß) superfamily, was shown to rejuvenate cardiac and skeletal muscle function and to improve cerebral vasculature and neurogenesis in old mice. However, recent experimental data reported that raising GDF11 levels inhibited skeletal muscle regeneration and had no effect on cardiac hypertrophy. Our aim was to investigate the effects of GDF11 on brain repair during the recovery phase after stroke. Methods: Mice were subjected to distal middle cerebral artery occlusion, and recombinant GDF11 (rGDF11) was injected intraperitoneally once a day during days 7-13 after stroke. Neuronal precursor cells (NPCs) proliferation and angiogenesis were assayed at 14 days. Neuronal regeneration was assayed at 42 days. The beam-walking test and CatWalk were used to evaluate behavioral functions. Downstream pathways of GDF11 were also investigated. Results: GDF11 was upregulated in the ipsilateral peri-infarct cortex and subventricular zone (SVZ) at 14 days after stroke. Treatment with rGDF11 enhanced the number of newborn NPCs and endothelial cells, microvascular length and area, and brain capillary perfusion. Western blots showed that rGDF11 upregulated brain-derived neurotrophic factor (BDNF) and increased the levels of proangiogenic factor angiopoietin-2 (Ang-2) and phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2). We also found that rGDF11 upregulated the transcription factors Smad2 and Smad3 phosphorylation, but these activations were blocked by a TGF-ß receptor inhibitor SB431542. Moreover, rGDF11-induced angiogenic remodeling and NPCs proliferation were reversed by injection of SB431542, suggesting that GDF11 may exert its effect via the TGF-ß/Smad2/3 signaling pathway. Finally, treating mice with rGDF11 resulted in a significant increase in neuronal regeneration and functional recovery. Conclusion: GDF11 promoted neurogenesis and angiogenesis and contributed to functional recovery after stroke in mice.