Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 531(7594): 348-51, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983539

RESUMO

Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a 'bottom-up' approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

2.
Chem Sci ; 7(2): 1156-1173, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29896376

RESUMO

The syntheses and properties of four magnetically-supramolecular oligomers of triangular Mn3 units are reported: dimeric [Mn6O2(O2CMe)8(CH3OH)2(pdpd)2] (3) and [Mn6O2(O2CMe)8(py)2(pdpd)2](ClO4)2 (4), and tetrameric [Mn12O4(O2CR)12(pdpd)6](ClO4)4 (R = Me (5), t Bu (6)). They were all obtained employing 3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione dioxime (pdpdH2), either in direct synthesis reactions involving oxidation of MnII salts or in metathesis reactions with the preformed complex [Mn3O(O2CMe)6(py)3](ClO4) (1); complex 6 was then obtained by carboxylate substitution on complex 5. Complexes 3 and 4 contain two [MnIII2MnII(µ3-O)]6+ and [MnIII3(µ3-O)]7+ units, respectively, linked by two pdpd2- groups. Complexes 5 and 6 contain four [MnIII3(µ3-O)]7+ units linked by six pdpd2- groups into a rectangular tetramer [MnIII3]4. Solid-state dc magnetic susceptibility studies showed that the Mn3 subunits in 3 and 4 have a ground-state spin of S = 3/2 and S = 2, respectively, while the Mn3 subunits in 5 and 6 possess an S = 6 ground state. Complexes 5 and 6 exhibit frequency-dependent out-of-phase (χ''M) ac susceptibility signals indicating 5 and 6 to be tetramers of Mn3 single-molecule magnets (SMMs). High-frequency EPR studies of a microcrystalline powder sample of 5·2CH2Cl2 provided precise spin Hamiltonian parameters of D = -0.33 cm-1, |E| = 0.03 cm-1, B04 = -8.0 × 10-5 cm-1, and g = 2.0. Magnetization vs. dc field sweeps on a single crystal of 5·xCH2Cl2 gave hysteresis loops below 1 K that exhibit exchange-biased quantum tunneling of magnetization (QTM) steps with a bias field of 0.19 T. Simulation of the loops determined that each Mn3 unit is exchange-coupled to the two neighbors linked to it by the pdpd2- linkers, with an antiferromagnetic inter-Mn3 exchange interaction of J/kB = -0.011 K (H = -2Jsi ·sj convention). The work demonstrates a rational approach to synthesizing magnetically-supramolecular aggregates of SMMs as potential multi-qubit systems for quantum computing.

3.
J Am Chem Soc ; 137(22): 7160-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26027646

RESUMO

[Mn3O(O2CMe)3(dpd)3/2)]2(I3)2 has been obtained from the reaction of 1,3-di(pyridin-2-yl)propane-1,3-dione dioxime (dpdH2) with triangular [Mn(III)3O(O2CMe)(py)3](ClO4). It comprises two [Mn(III)3O](7+) triangular units linked covalently by three dioximate ligands into a [Mn3]2 dimer. Solid state dc and ac magnetic susceptibility measurements reveal that each Mn3 subunit of the dimer is a separate single-molecule magnet (SMM) with an S = 6 ground state and that the two SMM units are very weakly ferromagnetically exchange coupled. High-frequency EPR spectroscopy on a single crystal displays signal splittings indicative of quantum superposition/entanglement of the two SMMs, and parallel studies on MeCN/toluene (1:1) frozen solutions reveal the same spectral features. The dimer thus retains its structure and inter-Mn3 coupling upon dissolution. This work establishes that covalently linked molecular oligomers of exchange-coupled SMMs can be prepared that retain their oligomeric nature and attendant inter-SMM quantum mechanical coupling in solution, providing a second phase for their study and demonstrating the feasibility of using solution methods for their deposition on surfaces and related substrates for study.

4.
Inorg Chem ; 54(4): 1883-9, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25621530

RESUMO

A new "offset" analogue of the classical [Mn6O2]-core oxime-bridged single-molecule magnets is introduced with a modified stacking arrangement of the [Mn3O] units. Studies of the magnetic properties reveal antiferromagnetic exchange interactions, a spin S = 4 ground state and population of low-lying excited states. Slow relaxation of the magnetization can be detected, with a corresponding energy barrier of 35.8 K. Interpretation of these features is supported with high-frequency EPR studies, quantifying the easy-axis type magnetic anisotropy, leading to a biaxial system. Redox properties investigated by cyclic and differential pulse voltammetry reveal multiple irreversible redox processes.

5.
J Am Chem Soc ; 136(21): 7623-6, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24836983

RESUMO

Enabling the rational synthesis of molecular candidates for quantum information processing requires design principles that minimize electron spin decoherence. Here we report a systematic investigation of decoherence via the synthesis of two series of paramagnetic coordination complexes. These complexes, [M(C2O4)3](3-) (M = Ru, Cr, Fe) and [M(CN)6](3-) (M = Fe, Ru, Os), were prepared and interrogated by pulsed electron paramagnetic resonance (EPR) spectroscopy to assess quantitatively the influence of the magnitude of spin (S = (1)/2, (3)/2, (5)/2) and spin-orbit coupling (ζ = 464, 880, 3100 cm(-1)) on quantum decoherence. Coherence times (T2) were collected via Hahn echo experiments and revealed a small dependence on the two variables studied, demonstrating that the magnitudes of spin and spin-orbit coupling are not the primary drivers of electron spin decoherence. On the basis of these conclusions, a proof-of-concept molecule, [Ru(C2O4)3](3-), was selected for further study. The two parameters establishing the viability of a qubit are a long coherence time, T2, and the presence of Rabi oscillations. The complex [Ru(C2O4)3](3-) exhibits both a coherence time of T2 = 3.4 µs and the rarely observed Rabi oscillations. These two features establish [Ru(C2O4)3](3-) as a molecular qubit candidate and mark the viability of coordination complexes as qubit platforms. Our results illustrate that the design of qubit candidates can be achieved with a wide range of paramagnetic ions and spin states while preserving a long-lived coherence.

6.
Angew Chem Int Ed Engl ; 52(43): 11290-3, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24009214

RESUMO

The electronic and magnetic properties of the complexes [Co(terpy)Cl2 ] (1), [Co(terpy)(NCS)2 ] (2), and [Co(terpy)2 ](NCS)2 (3) were investigated. The coordination environment around Co(II) in 1 and 2 leads to a high-spin complex at low temperature and single-molecule magnet properties with multiple relaxation pathways. Changing the ligand field and geometry with an additional terpy ligand leads to spin-crossover behavior in 3 with a gradual transition from high spin to low spin.

7.
Chemistry ; 19(27): 9064-71, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23696514

RESUMO

Microwave-assisted synthesis has been used to obtain the family of dodecanuclear Ni(II) complexes [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 (1), [Ni12(NO3)(MeO)12(BrC6H4CO2)9(MeOH)10(H2O)2][ClO4]2 (2), [Ni12(CO3)(MeO)12(MeC6H4CO2)9(MeOH)10(H2O)2]2[SO4] (3) and [Ni12(NO3)(MeO)12(MeC6H4CO2)9(MeOH)8(H2O)7][NO3]2 (4). They contain three {Ni4O4} cubane units which template around a central µ6 anion, either NO3(-) or CO3(2-). Their magnetic properties have been studied by superconducting quantum interference device (SQUID) magnetometry and high-field EPR measurements. The nanostructuration of the Ni12 species on mica surfaces is studied by AFM and grazing-incidence X-ray diffraction, which reveal the formation of polycrystalline thin layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA