Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035582

RESUMO

Incorporating additives into organic halide perovskite solar cells is the typical approach to improve power conversion efficiency. In this paper, a methyl-ammonium lead iodide (CH3NH3PbI3, MAPbI3) organic perovskite film was fabricated using a two-step sequential process on top of the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) hole-transporting layer. Experimentally, water and potassium halides (KCl, KBr, and KI) were incorporated into the PbI2 precursor solution. With only 2 vol% water, the cell efficiency was effectively improved. Without water, the addition of all of the three potassium halides unanimously degraded the performance of the solar cells, although the crystallinity was improved. Co-doping with KI and water showed a pronounced improvement in crystallinity and the elimination of carrier traps, yielding a power conversion efficiency (PCE) of 13.9%, which was approximately 60% higher than the pristine reference cell. The effect of metal halide and water co-doping in the PbI2 layer on the performance of organic perovskite solar cells was studied. Raman and Fourier transform infrared spectroscopies indicated that a PbI2-dimethylformamide-water related adduct was formed upon co-doping. Photoluminescence enhancement was observed due to the co-doping of KI and water, indicating the defect density was reduced. Finally, the co-doping process was recommended for developing high-performance organic halide perovskite solar cells.

2.
ACS Appl Mater Interfaces ; 11(14): 13507-13513, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30859803

RESUMO

ZnO is a direct band gap material that has numerous optoelectronic applications. Recently, the thermoelectric behavior of ZnO has drawn much attention because it is expected to enrich the multifunctional application of ZnO. However, the high thermal conductivity nature of ZnO (∼50 W/(m·K)) is a challenge to further increase its thermoelectrtic figure of merit ( ZT). In this paper, a way to increase the ZT of ZnO thin films by insertion of silicon-rich oxide (SRO) interlayers is reported. All of the constituents are earth-abundant and environmental friendly. The effects of the number of SRO layers, thickness, grain size, heat treatment, and crystallinity of ZnO of the superlattices on the thermoelectric behaviors of ZnO were investigated. The thermoelectric ZT was determined by the transient Harman method by measuring the Seebeck voltage. The thermal conductivity of the ZnO/SRO superlattices that is crucial to elucidate the ZT behaviors is calculated using molecular dynamic simulation, in which the Zn-O and Zn-Zn interactions were described by the Born-Mayer potential and the short-range non-Coulombic O-O interaction was described by the Morse potential. For a given total ZnO/SRO thickness, the grain size of the ZnO decreases monotonically with the increasing number of SRO layers, thus leading to a decrease of the thermal conductivity and an increase of the ZT of the superlattices. As the best result, the annealed 45 nm thick ZnO thin film with three SRO interlayers presents a high ZT of ∼0.16 at room temperature. A comprehensive study on the ZnO/SRO superlattice-based thermoelectrtic devices was carried out by the experiment and theoretical simulation. The results imply potential thermoelectric application of the ZnO/SRO superlattices.

3.
Nanoscale ; 8(13): 7155-62, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26965185

RESUMO

This paper presents a novel method for enhancing the electroluminescence (EL) efficiency of ten-period silicon-rich oxide (SRO)/SiO2 superlattice-based light-emitting diodes (LEDs). A hydrogen ion beam (HIB) was used to irradiate each SRO layer of the superlattices to increase the interfacial roughness on the nanoscale and the density of the Si nanocrystals (Si NCs). Fowler-Nordheim (F-N) tunneling was the major mechanism for injecting the carriers into the Si NCs. The barrier height of the F-N tunneling was lowered by forming a nano-roughened interface and the nonradiative Pb centers were passivated through the HIB treatment. Additionally, the reflectance of the LEDs was lowered because of the nano-roughened interface. These factors considerably increased the slope efficiency of EL and the maximum output power of the LEDs. The lighting efficiency increased by an order of magnitude, and the turn-on voltage decreased considerably. This study established an efficient approach for obtaining bright Si NC/SiO2 superlattice-based LEDs.

4.
Opt Express ; 21(13): 15888-95, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842375

RESUMO

This study presents the crystalline and luminescence properties of silicon-rich oxide (SRO)/SiO2 superlattices in which the SRO layers were prepared with a low-energy (<60 eV) argon ion-beam treatment. Experimental results evidenced that density of the Si nanocrystals (NCs) in the SRO layer was increased by ion-beam treatment after annealing, increasing the surface roughness. The stoichiometry of the as-prepared SRO layer was unchanged but the phase separation of the annealed SRO layer was enhanced by the ion-beam treatment, yielding visible white photoluminescence from the E' centers and Si NCs.

5.
Appl Opt ; 45(11): 2396-8, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16623234

RESUMO

A prototype of a GaN-based stacked micro-optics system is demonstrated. The system consists of a GaN microlens, GaN membrane gratings, six spacers, a spatial filter, and a 980 nm VCSEL. The laser beam is collimated by the GaN microlens and diffracted by the GaN membrane grating. The systems can be used in blue-violet-UV micro-optics systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA