Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083259

RESUMO

Edge contacts between two-dimensional (2D) materials in the in-plane direction can achieve minimal contact area and low contact resistance, producing atomically thin devices with improved performance. Particularly, lateral heterojunctions of metallic graphene and semiconducting transition metal dichalcogenides (TMDs) exhibit small Schottky barrier heights due to graphene's low work-function. However, issues exist with the fabrication of highly transparent and flexible multi-functional devices utilizing lateral heterostructures (HSs) of graphene and TMDs via spatially controlled growth. This review demonstrates the growth and electronic applications of lateral HSs of graphene and TMDs, highlighting key technologies controlling the wafer-scale growth of continuous films for practical applications. It deepens the understanding of the spatially controlled growth of lateral HSs using chemical vapor deposition methods, and also contributes to the applications that depend on the scale-up of all-2D electronics with ultra-high electrical performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32100543

RESUMO

The material-efficient monolayers of transition-metal dichalcogenides (TMDs) are a promising class of ultrathin nanomaterials with properties ranging from insulating through semiconducting to metallic, opening a wide variety of their potential applications from catalysis and energy storage to optoelectronics, spintronics, and valleytronics. In particular, TMDs have a great potential as emerging inexpensive alternatives to noble metal-based catalysts in electrochemical hydrogen evolution. Herein, we report a straightforward, low-cost, and general colloidal synthesis of various 2D transition-metal disulfide nanomaterials, such as MoS2, WS2, NiSx, FeSx, and VS2, in the absence of organic ligands. This new preparation route provides many benefits including relatively mild reaction conditions, high reproducibility, high yields, easy upscaling, no post-thermal annealing/treatment steps to enhance the catalytic activity, and, finally, especially for molybdenum disulfide nanosheets, high activity in the hydrogen evolution reaction. To underline the universal application of the synthesis, we prepared mixed CoxMo1-xS2 nanosheets in one step to optimize the catalytic activity of pure undoped MoS2, which resulted in an enhanced hydrogen evolution reaction performance characterized by onset potentials as low as 134 mV and small Tafel slopes of 55 mV/dec.

3.
ACS Nano ; 13(11): 13047-13055, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31618016

RESUMO

Two-dimensional (2D) heterostructured or alloyed monolayers composed of transition metal dichalcogenides (TMDCs) have recently emerged as promising materials with great potential for atomically thin electronic applications. However, fabrication of such artificial TMDC heterostructures with a sharp interface and a large crystal size still remains a challenge because of the difficulty in controlling various growth parameters simultaneously during the growth process. Here, a facile synthetic protocol designed for the production of the lateral TMDC heterostructured and alloyed monolayers is presented. A chemical vapor deposition approach combined with solution-processed precursor deposition makes it possible to accurately control the sequential introduction time and the supersaturation levels of the vaporized precursors and thus reliably and exclusively produces selective and heterogeneous epitaxial growth of TMDC monolayer crystals. In addition, TMDC core/shell heterostructured (MoS2/alloy, alloy/WS2) or alloyed (Mo1-xWxS2) monolayers are also easily obtained with precisely controlled growth parameters, such as sulfur introduction timing and growth temperature. These results represent a significant step toward the development of various 2D materials with interesting properties.

4.
Nat Mater ; 18(12): 1309-1314, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31451781

RESUMO

Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.

6.
Nature ; 567(7746): 81-86, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842637

RESUMO

Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.

7.
Nanoscale ; 11(11): 4726-4734, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30839971

RESUMO

Monolayered, semiconducting molybdenum disulfide (MoS2) is of considerable interest for its potential applications in next-generation flexible, wearable, and transparent photodetectors because it has outstanding physical properties coupled with unique atomically thin dimensions. However, there is still a lack of understanding in terms of the underlying mechanisms responsible for the photoresponse dynamics, which makes it difficult to identify the appropriate device design strategy for achieving a fast photoresponse time in MoS2 photodetectors. In this study, we investigate the importance of surface functionalization on controlling the charge carrier densities in a MoS2 monolayer and in turn the corresponding behavior of the photoresponse in relation to the position of the Fermi-level and the energy band structure. We find that the p-doping and n-doping, which is achieved through the surface functionalization of the MoS2 monolayer, leads to devices with different photoresponse behavior. Specifically, the MoS2 devices with surface functional groups contributing to p-doping exhibited a faster response time as well as higher sensitivity compared to that observed for the MoS2 devices with surface functional groups contributing to n-doping. We attribute this difference to the degree of bending in the energy bands at the metal-semiconductor junction as a result of shifting in the Fermi-level position, which influences the optoelectronic transport properties as well as the recombination dynamics leading to a low dark and thus high detectivity and fast decay time. Based upon these findings, we have also demonstrated the broad applicability of surface functionalization by fabricating a flexible MoS2 photodetector that shows an outstanding decay time of 0.7 s, which is the fastest response time observed in flexible MoS2 detectors ever reported.

8.
Nanotechnology ; 30(23): 235301, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30769339

RESUMO

One-dimensional (1D) and three-dimensional (3D) residue-free metal oxide patterns are directly fabricated over large areas using liquid transfer imprint lithography (LTIL) with an ultraviolet-curable metal oxide precursor resist. A 1D line or pillar array of metal oxides nano-patterns without a residual layer is formed by LTIL and annealing processes. A 3D layer-by-layer nanomesh structure is successfully constructed by repeating the LTIL method without a complex etching process. In addition, it is possible to form a hierarchical structure in which zinc oxide nanowires are selectively grown on a desired zinc oxide (ZnO) seed pattern formed by LTIL via a hydrothermal method. Unlike the pattern fabricated by the conventional nanoimprint lithography method, in the case of the pattern formed by LTIL the residues accumulated between the patterns during the patterning procedure can be removed, and thus it is possible to easily form various types of nanostructures.

9.
Nat Commun ; 10(1): 987, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804336

RESUMO

The original version of this Article contained an error in the spelling of the author Matthew Holwill, which was incorrectly given as Mathew Holwill. This has now been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 10(1): 230, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651554

RESUMO

Despite a rich choice of two-dimensional materials, which exists these days, heterostructures, both vertical (van der Waals) and in-plane, offer an unprecedented control over the properties and functionalities of the resulted structures. Thus, planar heterostructures allow p-n junctions between different two-dimensional semiconductors and graphene nanoribbons with well-defined edges; and vertical heterostructures resulted in the observation of superconductivity in purely carbon-based systems and realisation of vertical tunnelling transistors. Here we demonstrate simultaneous use of in-plane and van der Waals heterostructures to build vertical single electron tunnelling transistors. We grow graphene quantum dots inside the matrix of hexagonal boron nitride, which allows a dramatic reduction of the number of localised states along the perimeter of the quantum dots. The use of hexagonal boron nitride tunnel barriers as contacts to the graphene quantum dots make our transistors reproducible and not dependent on the localised states, opening even larger flexibility when designing future devices.

11.
Small ; 15(2): e1802228, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30387317

RESUMO

An oxygen reduction reaction (ORR) catalyst/support system is designed to have Pt nanoparticles nanoconfined in a nanodimensionally limited space. Holey crumpled reduced graphene oxide plates (hCR-rGO) are used as a carbon support for Pt loading. As expected from interparticular Pt-to-Pt distance of Pt-loaded hCR-rGO longer than that of Pt/C (Pt-loaded carbon black as a practical Pt catalyst), the durability of ORR electroactivity along cycles is improved by replacing the widely used carbon black with hCR-rGO. Unexpected morphological changes of Pt are electrochemically induced during repeated ORR processes. Spherical multifaceted Pt particles are evolved to {110}-dominant dendritic multipods. Nanoconfinement of a limited number of Pt within a nanodimensionally limited space is responsible for the morphological changes. The improved durability observed from Pt-loaded hCR-rGO originates from 1) dendritic pod structure of Pt exposing more active sites to reactants and 2) highly ORR-active Pt {110} planes dominant on the surface.

12.
ACS Nano ; 12(11): 10764-10771, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30335961

RESUMO

Hexagonal boron nitride (h-BN) and graphene have emerged as promising materials for proton exchange membranes because of their high proton conductivity and chemical stability. However, the defects and grain boundaries generated during the growth and transfer of two-dimensional materials limit their practical applicability. Here, we report the fabrication of membrane electrode assemblies using large-area single-oriented AA'-stacked trilayer h-BN (3L-BN), which exhibits very few defects during the growth and transfer, as a proton exchange membrane for use in fuel cell systems. The fuel cell based on AA'-stacked 3L-BN showed a H2 permeation current density as low as 2.69 mA cm-2 and an open circuit voltage (OCV) as high as 0.958 V; this performance is much superior to those for cells based on Nafion (3.7 mA cm-2 and 0.942 V, respectively) and single-layer h-BN (10.08 mA cm-2 and 0.894 V, respectively). Furthermore, the fuel cell with the AA'-stacked 3L-BN membrane almost maintained its original performance (OCV, maximum power density, and H2 permeation current density) even after 100 h of an accelerated stress test at 30% RH and 90 °C, while the fuel cells with the Nafion and single-layer BN membranes exhibited severely deteriorated performances. The stability of the cell based on the AA'-stacked 3L-BN membrane was better because the membrane prevented gas crossover and suppressed the generation of reactive radicals during cell operation.

13.
Adv Mater ; 30(20): e1707105, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603427

RESUMO

MoS2 becomes an efficient and durable nonprecious-metal electrocatalyst for the hydrogen evolution reaction (HER) when it contains multifunctional active sites for water splitting derived from 1T-phase, defects, S vacancies, exposed Mo edges with expanded interlayer spacings. In contrast to previously reported MoS2 -based catalysts targeting only a single or few of these characteristics, the all-in-one MoS2 catalyst prepared herein features all of the above active site types. During synthesis, the intercalation of in situ generated NH3 molecules into MoS2 sheets affords ammoniated MoS2 (A-MoS2 ) that predominantly comprises 1T-MoS2 and exhibits an expanded interlayer spacing. The subsequent reduction of A-MoS2 results in the removal of intercalated NH3 and H2 S to form an all-in-one MoS2 with multifunctional active sites mentioned above (R-MoS2 ) that exhibits electrocatalytic HER performance in alkaline media superior to those of all previously reported MoS2 -based electrocatalysts. In particular, a hybrid MoS2 /nickel foam catalyst outperforms commercial Pt/C in the practically meaningful high-current region (>25 mA cm-2 ), demonstrating that R-MoS2 -based materials can potentially replace Pt catalysts in practical alkaline HER systems.

14.
Nano Lett ; 17(9): 5634-5640, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28832158

RESUMO

van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS2/WS2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS2 to MoS2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.

16.
ACS Appl Mater Interfaces ; 9(33): 27839-27846, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28767219

RESUMO

Organic crystals deposited on 2-dimensional (2D) van der Waals substrates have been widely investigated due to their unprecedented crystal structures and electrical properties. van der Waals interaction between organic molecules and the substrate induces epitaxial growth of high quality organic crystals and their anomalous crystal morphologies. Here, we report on unique ambipolar charge transport of a "lying-down" pentacene crystal grown on a 2D hexagonal boron nitride van der Waals substrate. From in-depth analysis on crystal growth behavior and ultraviolet photoemission spectroscopy measurement, it is revealed that the pentacene crystal at the initial growth stage have a lattice-strained packing structure and unique energy band structure with a deep highest occupied molecular orbital level compared to conventional "standing-up" crystals. The lattice-strained pentacene few layers enable ambipolar charge transport in field-effect transistors with balanced hole and electron field-effect mobilities. Complementary logic circuits composed of the two identical transistors show clear inverting functionality with a high gain up to 15. The interesting crystal morphology of organic crystals on van der Waals substrates is expected to attract broad attentions on organic/2D interfaces for their electronic applications.

17.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692787

RESUMO

Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.

18.
Nano Lett ; 17(9): 5342-5349, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28753319

RESUMO

Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

19.
ACS Nano ; 11(7): 7084-7090, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28613831

RESUMO

Transition to a commensurate state changes the local symmetry periodicity on two-dimensional van der Waals superstructures, evoking distinctive properties far beyond individual layers. We investigate the morphology of moiré superstructures of graphene on hexagonal boron nitride (hBN) with a low twist angle (≈0°) through moiré fringe analyses with dark field transmission electron microscopy. The moiré fringes exhibit local variation, suggesting that the interaction between graphene and hBN depends on the stacking configuration and that local transition to the commensurate state occurs through the reduced crystalline mismatch (that is, by lattice stretching and twisting on the graphene lattices). This moiré superstructure analysis suggests an inventive method for studying the interaction between stacked van der Waals layers and for discerning the altered electronic and optical properties of graphene on hBN superstructures with a low twist angle, even at low magnification.

20.
Nanoscale ; 9(33): 11881-11887, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28638901

RESUMO

The fabrication of large-area and well-ordered nanostructures using lithographic techniques is challenging. We have developed novel approaches for sub-50 nm nanopatterning using an electrohydrodynamic lithography (EHL) technique by tailoring experimental parameters such as applied voltage, stamp features, filling ratio, and choice of resist film. We obtain a sub-50 nm pattern replica from a master stamp that contains an array of line patterns having 50 nm widths. Moreover, we show that a far-smaller pattern replication than the original pattern size can be readily obtained by carefully adjusting the experimental conditions. Perfect- and much smaller-pattern replicas have been realized from the master stamp with an array of hole patterns having a 400 nm hole size by tuning the filling ratio. We also demonstrate that an array of 30 nm graphene nanoribbons can be easily fabricated by exploring a hierarchical core-shell template structure employing a bilayer resist film via an EHL technique. The proposed minimal-contact patterning method is simple, versatile, and inexpensive and has potential to become a powerful technique for realizing feasible ultrafine nanostructures on a wafer scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA