Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Virulence ; 11(1): 430-445, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32403973

RESUMO

Toll-like receptors (TLRs) play critical roles in the innate recognition of Mycobacterium tuberculosis (Mtb) by host immune cells. However, controversy has arisen regarding the role of TLR4 in determining the outcomes of Mtb infection. To address this controversy, the function of TLR4 in the induction of an optimal protective immune response against the highly virulent Mtb K-infection was comparatively investigated in C3 H/HeJ (TLR4-deficient mutant) and C3 H/HeN (TLR4-competent wild-type) mice. Interestingly, following Mtb infection, C3 H/HeJ mice showed a more severe disease phenotype than C3 H/HeN mice, exhibiting reduced weight and a marked increase in bacterial burden along with necrotic lung inflammation. Analysis of the immune cell composition revealed significantly increased neutrophils in the lung and significant production of IL-10 accompanied by the impairment of the protective Th1 response in C3 H/HeJ mice. Reducing the neutrophil numbers by treating C3 H/HeJ mice with an anti-Ly6 G monoclonal antibody (mAb) and blocking IL-10 signaling with an anti-IL-10 receptor mAb reduced the excessive lung inflammation and bacterial burden in C3 H/HeJ mice. Therefore, abundant IL-10 signaling and neutrophils have detrimental effects in TLR4-deficient mice during Mtb infection. However, the blockade of IL-10 signaling produced an increase in the CD11bhiLy6 Ghi neutrophil population, but the phenotypes of these neutrophils were different from those of the CD11bintLy6 Gint neutrophils from mice with controlled infections. Collectively, these results show that TLR4 positively contributes to the generation of an optimal protective immunity against Mtb infection. Furthermore, investigating the TLR4-mediated response will provide insight for the development of effective control measures against tuberculosis.

2.
Sci Rep ; 10(1): 3178, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081976

RESUMO

Pulmonary disease (PD) due to nontuberculous mycobacteria (NTM) is increasing globally, but specific biomarkers for NTM-PD have not been established. As circulating miRNAs are promising biomarkers for various diseases, we investigated whether miRNAs have potential as NTM-PD biomarkers. Sera from 12 NTM-PD patients due to Mycobacterium avium, M. intracellulare, M. abscessus, or M. massiliense and three healthy controls were initially evaluated via small RNA sequencing. Multiple miRNAs showed significant differences in expression in patients compared to in healthy controls, with some expression differences unique to PD caused by a specific mycobacterial species. Notably, 14 miRNAs exhibited significant expression differences in PD associated with all four mycobacteria. Validation by quantitative reverse-transcription-PCR in an additional 40 patients with NTM-PD and 40 healthy controls confirmed that four differentially expressed miRNAs (hsa-miR-484, hsa-miR-584-5p, hsa-miR-625-3p, and hsa-miR-4732-5p) showed significantly higher serum expressions in NTM-PD patients than in controls. Receiver operating characteristic curve analysis of these four miRNAs supported the discriminative potential for NTM-PD and their combination provided an improved diagnostic value for NTM-PD. Furthermore, bioinformatics analysis revealed their 125 target genes, which were mostly associated with immune responses. Collectively, this study identified four miRNAs as potential biomarkers for NTM-PD and provided insight into NTM-PD pathophysiology.

3.
Antimicrob Agents Chemother ; 64(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31767722

RESUMO

There is no reliable cure for Mycobacterium abscessus lung disease. Rifampin is not used clinically due to poor in vitro potency. In contrast, we have shown that rifabutin, another approved rifamycin used to treat tuberculosis, is potent in vitro against M. abscessus Here, we report that rifabutin is as active as clarithromycin against M. abscessus K21 in NOD.CB17-Prkdcscid/NCrCrl mice. This suggests that rifabutin should be considered a repurposing candidate for patients with M. abscessus disease.

4.
Eur Respir J ; 55(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31619468

RESUMO

Limited data are available regarding the prognostic factors for patients with nontuberculous mycobacterial pulmonary disease (NTM-PD). We investigated the prognostic factors associated with long-term mortality in NTM-PD patients after adjusting for individual confounders, including aetiological organism and radiological form.A total of 1445 patients with treatment-naïve NTM-PD who were newly diagnosed between July 1997 and December 2013 were included. The aetiological organisms were as follows: Mycobacterium avium (n=655), M. intracellulare (n=487), M. abscessus (n=129) and M. massiliense (n=174). The factors associated with mortality in NTM-PD patients were analysed using a multivariable Cox model after adjusting for demographic, radiological and aetiological data.The overall 5-, 10- and 15-year cumulative mortality rates for the NTM-PD patients were 12.4%, 24.0% and 36.4%, respectively. On multivariable analysis, the following factors were significantly associated with mortality in NTM-PD patients: old age, male sex, low body mass index, chronic pulmonary aspergillosis, pulmonary or extrapulmonary malignancy, chronic heart or liver disease and erythrocyte sedimentation rate. The aetiological organism was also significantly associated with mortality: M. intracellulare had an adjusted hazard ratio (aHR) of 1.40, 95% CI 1.03-1.91; M. abscessus had an aHR of 2.19, 95% CI 1.36-3.51; and M. massiliense had an aHR of 0.99, 95% CI 0.61-1.64, compared to M. avium Mortality was also significantly associated with the radiological form of NTM-PD for the cavitary nodular bronchiectatic form (aHR 1.70, 95% CI 1.12-2.59) and the fibrocavitary form (aHR 2.12, 95% CI 1.57-3.08), compared to the non-cavitary nodular bronchiectatic form.Long-term mortality in patients with NTM-PD was significantly associated with the aetiological NTM organism, cavitary disease and certain demographic characteristics.

5.
J Arthroplasty ; 35(3): 864-869, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31708292

RESUMO

BACKGROUND: Antibiotic-loaded bone cement (ALBC) is used to deliver antimycobacterial agents into the focal lesion of musculoskeletal tuberculosis. Although kanamycin is currently used as an antimycobacterial agent for the treatment of multidrug-resistant tuberculosis, there is no information about its suitability in ALBC. METHODS: An in vitro experiment was conducted with cylindrical shape of 40 g of bone cement with 1, 2, and 3 g of kanamycin. Eluate (1 mL) was extracted from each specimen to measure the level of elution and antimycobacterial activity on days 1, 4, 7, 14, and 30. The quantity of kanamycin in eluates was evaluated by a liquid chromatography-mass spectrometry system, and the antimycobacterial activity of eluates against Mycobacterium tuberculosis H37Rv was calculated by comparing the minimal inhibitory concentration. The ultimate compression strength was conducted using a material testing system machine (Instron 3366; Instron, Norwood, MA) before and after elution. RESULTS: Eluates from ALBC containing 2 and 3 g of kanamycin had effective antimycobacterial activity for 30 days, whereas eluates from ALBC containing 1 g of kanamycin were partially active until day 30. The pre-eluted compression strength of kanamycin-loaded cement and vancomycin-loaded cement was weaker as they contained a larger amount of antibiotics. There was no statistical difference between the strength of all kanamycin regimens and 1 g of vancomycin in the ultimate compression test. After 30 days of elution, the strength of all kanamycin-loaded cement and vancomycin-loaded cement cylinders was significantly lower than that of initial specimens (P < .05). CONCLUSION: The antimycobacterial activity of ALBC containing more than 2 g of kanamycin was effective during a 30-day period. The ultimate compression strength of bone cement loaded with 1-3 g of kanamycin was comparable with 1 g of vancomycin while maintaining effective elution until day 30.

6.
Gut Liver ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31818048

RESUMO

Background/Aims: Adequate bowel preparation is important for successful colonoscopy. We aimed to evaluate the clinical feasibility and effectiveness of abdominal vibration stimulation in bowel preparation before therapeutic colonoscopy. Methods: A single center, prospective, randomized, investigator-blinded study was performed between January 2016 and December 2016. Patients for therapeutic colonoscopy were prospectively enrolled and assigned to either the vibrator group or walking group. Patients who refused to participate in this study as part of the experimental group consented to register in the control group instead. During the preparation period, patients assigned to the walking group walked ≥3,000 steps, whereas those assigned to the vibrator group received abdominal vibrator stimulation and restricted walking. All patients received the same colon cleansing regimen: 4-L split-dose polyethylene glycol (PEG) solution. Results: Three hundred patients who received PEG solution for therapeutic colonoscopy were finally enrolled in this study (n=100 per group). Bowel cleansing with abdominal vibration stimulation showed almost similar results to that with walking exercise (Boston Bowel Preparation Scale score for the entire colon: vibrator vs walking vs control, 7.38±1.55 vs 7.39±1.55 vs 6.17±1.15, p<0.001). There were no significant differences between the vibrator group and walking group regarding instances of diarrhea after taking PEG, time to first diarrhea after taking PEG, total procedure time, and patient satisfaction. Conclusions: This study indicates that, compared with conventional walking exercise, abdominal vibration stimulation achieved similar rates of bowel cleansing adequacy and colonoscopy success without compromising safety or patient satisfaction.

7.
Sci Rep ; 9(1): 17127, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748527

RESUMO

Unfortunately, the options for treating multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infections are extremely limited. Recently, fosfomycin and minocycline were newly introduced as a treatment option for MDR A. baumannii infection. Therefore, we investigated the efficacy of the combination of colistin with fosfomycin and minocycline, respectively, as therapeutic options in MDR A. baumannii pneumonia. We examined a carbapenem-resistant A. baumannii isolated from clinical specimens at Severance Hospital, Seoul, Korea. The effect of colistin with fosfomycin, and colistin with minocycline on the bacterial counts in lung tissue was investigated in a mouse model of pneumonia caused by MDR A. baumannii. In vivo, colistin with fosfomycin or minocycline significantly (p < 0.05) reduced the bacterial load in the lungs compared with the controls at 24 and 48 h. In the combination groups, the bacterial loads differed significantly (p < 0.05) from that with the more active antimicrobial alone. Moreover, the combination regimens of colistin with fosfomycin and colistin with minocycline showed bactericidal and synergistic effects compared with the more active antimicrobial alone at 24 and 48 h. This study demonstrated the synergistic effects of combination regimens of colistin with fosfomycin and minocycline, respectively, as therapeutic options in pneumonia caused by MDR A. baumannii.

8.
Front Immunol ; 10: 2542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736965

RESUMO

Early secretory antigenic target-6 (ESAT6) is a potent immunogenic antigen expressed in Mycobacterium tuberculosis as well as in some non-tuberculous mycobacteria (NTM), such as M. kansasii. M. kansasii is one of the most clinically relevant species of NTM that causes mycobacterial lung disease, which is clinically indistinguishable from tuberculosis. In the current study, we designed a novel cell-based vaccine using B cells that were transduced with vaccinia virus expressing ESAT6 (vacESAT6), and presenting α-galactosylceramide (αGC), a ligand of invariant NKT cells. We found that B cells loaded with αGC had increased levels of CD80 and CD86 after in vitro stimulation with NKT cells. Immunization of mice with B/αGC/vacESAT6 induced CD4+ T cells producing TNF-α and IFN-γ in response to heat-killed M. tuberculosis. Immunization of mice with B/αGC/vacESAT6 ameliorated severe lung inflammation caused by M. kansasii infection. We also confirmed that immunization with B/αGC/vacESAT6 reduced M. kansasii bacterial burden in the lungs. In addition, therapeutic administration of B/αGC/vacESAT6 increased IFN-γ+ CD4+ T cells and inhibited the progression of lung pathology caused by M. kansasii infection. Thus, B/αGC/vacESAT6 could be a potent vaccine candidate for the prevention and treatment of ESAT6-expressing mycobacterial infection caused by M. kansasii.

9.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31591165

RESUMO

Despite the great increase in the understanding of the biology and pathogenesis of Mycobacterium tuberculosis achieved by the scientific community in recent decades, tuberculosis (TB) still represents one of the major threats to global human health. The only available vaccine (Mycobacterium bovis BCG) protects children from disseminated forms of TB but does not effectively protect adults from the respiratory form of the disease, making the development of new and more-efficacious vaccines against the pulmonary forms of TB a major goal for the improvement of global health. Among the different strategies being developed to reach this goal is the construction of attenuated strains more efficacious and safer than BCG. We recently showed that a sigE mutant of M. tuberculosis was more attenuated and more efficacious than BCG in a mouse model of infection. In this paper, we describe the construction and characterization of an M. tuberculosis sigE fadD26 unmarked double mutant fulfilling the criteria of the Geneva Consensus for entering human clinical trials. The data presented suggest that this mutant is even more attenuated and slightly more efficacious than the previous sigE mutant in different mouse models of infection and is equivalent to BCG in a guinea pig model of infection.


Assuntos
Ligases/deficiência , Mycobacterium tuberculosis/imunologia , Fator sigma/deficiência , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Proteínas de Bactérias , Modelos Animais de Doenças , Cobaias , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Vacinas contra a Tuberculose/efeitos adversos , Vacinas contra a Tuberculose/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Virulência
10.
ACS Infect Dis ; 5(12): 2055-2060, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31599569

RESUMO

Mycobacterium abscessus (M. abscessus) is a rapidly growing nontuberculous mycobacteria that is quickly emerging as a global health concern. M. abscessus pulmonary infections are frequently intractable due to the high intrinsic resistance to most antibiotics. Therefore, there is an urgent need to discover effective pharmacological options for M. abscessus infections. In this study, the potency of the antituberculosis drug Telacebec (Q203) was evaluated against M. abscessus. Q203 is a clinical-stage drug candidate targeting the subunit QcrB of the cytochrome bc1:aa3 terminal oxidase. We demonstrated that the presence of four naturally-occurring polymorphisms in the M. abscessus QcrB is responsible for the high resistance of the bacterium to Q203. Genetics reversion of the four polymorphisms sensitized M. abscessus to Q203. While this study highlights the limitation of a direct drug repurposing approach of Q203 and related drugs for M. abscessus infections, it reveals that the M. abscessus cytochrome bc1:aa3 respiratory branch is sensitive to chemical inhibition.

11.
Anal Chem ; 91(22): 14705-14711, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31650833

RESUMO

Colorectal cancer is a major cause of cancer-related deaths worldwide. Histologic diagnosis using biopsy samples of colorectal neoplasms is the most important step in determining the treatment methods, but these methods have limitations in accuracy and effectiveness. Herein, we report a dual-recognition two-photon probe and its application in the discrimination between human colorectal neoplasms. The probe is composed of two monosaccharides, d-glucosamine and ß-d-galactopyranoside, in a fluorophore for the monitoring of both glucose uptake and ß-gal hydrolysis. In vitro/cell imaging studies revealed the excellent selectivity and sensitivity of the probe for glucose transporter-mediated glucose uptake and ß-gal activity. Cancer-specific uptake was monitored by increased fluorescence intensity, and additional screening of cancer cells was achieved by changes in emission ratio owing to the higher activity of ß-gal. Using human colon tissues and two-photon microscopy, we found that the plot of intensity versus ratio can accurately discriminate between colorectal neoplasms in the order of cancer progression (normal, adenoma, and carcinoma).

12.
Sci Rep ; 9(1): 15560, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664157

RESUMO

Since ID93/GLA-SE was developed as a targeted BCG-prime booster vaccine, in the present study, we evaluated the protective efficacy of ID93/GLA-SE as a boost to a BCG-prime against the hypervirulent Mycobacterium tuberculosis (Mtb) K challenge to provide further information on the development and application of this vaccine candidate. Boosting BCG with the ID93/GLA-SE vaccine significantly reduced bacterial burden at 16 weeks post-challenge while the BCG vaccine alone did not confer significant protection against Mtb K. The pathological analysis of the lung from the challenged mice also showed the remarkably protective boosting effect of ID93/GLA-SE on BCG-immunised animals. Moreover, qualitative and quantitative analysis of the immune responses following ID93/GLA-SE-immunisation demonstrated that ID93/GLA-SE was able to elicit robust and sustained Th1-biased antigen-specific multifunctional CD4+ T-cell responses up to 16 weeks post-challenge as well as a high magnitude of an antigen-specific IgG response. Our findings demonstrate that the ID93/GLA-SE vaccine candidate given as a BCG-prime boost regimen confers a high level of long-term protection against the hypervirulent Mtb Beijing infection. These findings will provide further and more feasible validation for the potential utility of this vaccine candidate particularly in East-Asian countries, with the predominance of the Beijing genotype, after BCG vaccination.

13.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363023

RESUMO

Despite the administration of multiple drugs that are highly effective in vitro, tuberculosis (TB) treatment requires prolonged drug administration and is confounded by the emergence of drug-resistant strains. To understand the mechanisms that limit antibiotic efficacy, we performed a comprehensive genetic study to identify Mycobacterium tuberculosis genes that alter the rate of bacterial clearance in drug-treated mice. Several functionally distinct bacterial genes were found to alter bacterial clearance, and prominent among these was the glpK gene that encodes the glycerol-3-kinase enzyme that is necessary for glycerol catabolism. Growth on glycerol generally increased the sensitivity of M. tuberculosis to antibiotics in vitro, and glpK-deficient bacteria persisted during antibiotic treatment in vivo, particularly during exposure to pyrazinamide-containing regimens. Frameshift mutations in a hypervariable homopolymeric region of the glpK gene were found to be a specific marker of multidrug resistance in clinical M. tuberculosis isolates, and these loss-of-function alleles were also enriched in extensively drug-resistant clones. These data indicate that frequently observed variation in the glpK coding sequence produces a drug-tolerant phenotype that can reduce antibiotic efficacy and may contribute to the evolution of resistance.IMPORTANCE TB control is limited in part by the length of antibiotic treatment needed to prevent recurrent disease. To probe mechanisms underlying survival under antibiotic pressure, we performed a genetic screen for M. tuberculosis mutants with altered susceptibility to treatment using the mouse model of TB. We identified multiple genes involved in a range of functions which alter sensitivity to antibiotics. In particular, we found glycerol catabolism mutants were less susceptible to treatment and that common variation in a homopolymeric region in the glpK gene was associated with drug resistance in clinical isolates. These studies indicate that reversible high-frequency variation in carbon metabolic pathways can produce phenotypically drug-tolerant clones and have a role in the development of resistance.

14.
Front Microbiol ; 10: 1795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440223

RESUMO

Mycobacterium avium subspecies hominissuis (MAH) is the most common agent causing nontuberculous mycobacterial disease in humans. It mainly causes chronic and slowly progressive pulmonary disease (PD), which requires a long-term treatment and allows opportunistic co-infection by common pulmonary pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus spp., thereby resulting in alteration of host immune response. In the present study, we investigated the phenotypical and functional alterations of dendritic cells (DCs), a bridge antigen-presenting cell between innate and adaptive immunity, following MAH infection in response to various toll-like receptor (TLR) agonists mimicking co-infection conditions, along with subsequent T cell response. Interestingly, MAH-infected DCs produced interleukin (IL)-10 significantly and decreased the level of IL-12p70 in response to Poly I:C and LPS, although not so in response to Pam3CSK4, imiquimod, or CpG oligodeoxynucleotide, thereby indicating that the TLR3 and TLR4 agonists functionally altered MAH-infected DCs toward a tolerogenic phenotype. Moreover, IL-10-producing tolerogenic DCs were remarkably induced by MAH and P. aeruginosa co-infection. To precisely elucidate how these TLR agonists induce tolerogenic DCs upon MAH infection, we sought to clarify the major mechanisms involved, using LPS, which caused the greatest increase in IL-10 production by the TLR agonists. Increased IL-10 stimulated the creation of tolerogenic DCs by significantly reducing MHC class II expression and MHC class II-antigen presentation, eventually inhibiting CD4+ T cell proliferation, along with decreased IFN-γ and IL-2. The tolerogenic phenotypes of MAH/LPS-treated DCs were restored by anti-IL-10 neutralization, validating the induction of tolerogenicity by IL-10. Interestingly, IL-10-producing-tolerogenic DCs were observed after infection with live MAH, rather than with inactivated or dead MAH. In addition, TLR2-/- and TLR4-/- DCs confirmed the association of IL-10 production with TLR2 and TLR4 signaling; IL-10 production synergistically increased when both TLR4 and TLR2 were involved. Expression of Cox2 and PGE2 increased along with IL-10 while that of IL-10 was inhibited by their selective inhibitors celecoxib and anti-EP2 antibody, respectively. Thus, the tolerogenic phenotypes of MAH/LPS-treated DCs were proven to be induced by Cox-2/PGE2-dependent EP2 signaling as the main mechanism. These findings may provide important clues that the tolerogenic cascade in MAH-infected DCs induced by TLR 4 signaling can alter host immune response.

15.
J Cell Sci ; 132(17)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31371491

RESUMO

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.

16.
Immune Netw ; 19(3): e15, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31281712

RESUMO

To this date, the criteria to distinguish peritoneal macrophages and dendritic cells (DCs) are not clear. Here we delineate the subsets of myeloid mononuclear cells in the mouse peritoneal cavity. Considering phenotypical, functional, and ontogenic features, peritoneal myeloid mononuclear cells are divided into 5 subsets: large peritoneal macrophages (LPMs), small peritoneal macrophages (SPMs), DCs, and 2 MHCII+CD11c+CD115+ subpopulations (i.e., MHCII+CD11c+CD115+CD14-CD206- and MHCII+CD11c+CD115+CD14+CD206+). Among them, 2 subsets of competent Ag presenting cells are demonstrated with distinct functional characteristics, one being DCs and the other being MHCII+CD11c+CD115+CD14-CD206- cells. DCs are able to promote fully activated T cells and superior in expanding cytokine producing inflammatory T cells, whereas MHCII+CD11c+CD115+CD14-CD206- cells generate partially activated T cells and possess a greater ability to induce Treg under TGF-ß and retinoic acid conditions. While the development of DCs and MHCII+CD11c+CD115+CD14-CD206- cells are responsive to the treatment of FLT3 ligand and GM-CSF, the number of LPMs, SPMs, and MHCII+CD11c+CD115+CD14+CD206+ cells are only influenced by the injection of GM-CSF. In addition, the analysis of gene expression profiles among MHCII+ peritoneal myeloid mononuclear cells reveals that MHCII+CD11c+CD115+CD14+CD206+ cells share high similarity with SPMs, whereas MHCII+CD11c+CD115+CD14-CD206- cells are related to peritoneal DC2s. Collectively, our study identifies 2 distinct subpopulations of MHCII+CD11c+CD115+ cells, 1) MHCII+CD11c+CD115+CD14-CD206- cells closely related to peritoneal DC2s and 2) MHCII+CD11c+CD115+CD14+CD206+ cells to SPMs.

17.
Anal Chem ; 91(14): 9246-9250, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31265245

RESUMO

γ-Glutamyltransferase (GGT) plays a role in cleaving the γ-glutamyl bond of glutathione. The GGT is known to be overexpressed in some tumors and has been recognized as a potential biomarker for malignant tumors. Colon cancer is one of the most common cancers worldwide; however, there is no quantitative method for detecting cancer cells in human colon tissues. In this study, we report a ratiometric two-photon probe for GGT that can be applied in human colon tissues. The probe (Probe 2) showed high fluorescence efficiency, marked fluorescence changes, excellent kinetics, and selectivity for the GGT in live colon cells. Additionally, we obtained ratiometric two-photon microscopy images of GGT activity in human colon tissue. We used this method to compare normal and cancer tissues based on their ratio values; the ratio value was higher in cancer tissue than in normal tissue. This study provides a method for quantitative analysis of GGT, particularly in human colon cancer, which will be useful for studying GGT-related diseases and diagnosing colon cancer.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31182533

RESUMO

We evaluated the in vitro activities of the antimicrobial drugs bedaquiline and delamanid against the major pathogenic nontuberculous mycobacteria (NTM). Delamanid showed high MIC values for all NTM except Mycobacterium kansasii However, bedaquiline showed low MIC values for the major pathogenic NTM, including Mycobacterium avium complex, Mycobacterium abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. kansasii Bedaquiline also had low MIC values with macrolide-resistant NTM strains and warrants further investigation as a potential antibiotic for NTM treatment.

19.
J Clin Microbiol ; 57(8)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31167842

RESUMO

We evaluated the GenoType NTM-DR (NTM-DR) line probe assay for identifying Mycobacterium avium complex (MAC) species and Mycobacterium abscessus subspecies and for determining clarithromycin and amikacin resistance. Thirty-eight reference strains and 145 clinical isolates (58 MAC and 87 M. abscessus isolates), including 54 clarithromycin- and/or amikacin-resistant strains, were involved. The performance of the NTM-DR assay in rapid identification was evaluated by comparison with results of multigene sequence-based typing, whereas performance in rapid detection of clarithromycin and amikacin resistance was evaluated by comparison with sequencing of the erm(41), rrl, and rrs genes and drug susceptibility testing (DST). The accuracies of MAC and M. abscessus (sub)species identification were 92.1% (35/38) and 100% (145/145) for the 38 reference strains and 145 clinical isolates, respectively. Three MAC strains other than M. intracellulare were found to cross-react with the M. intracellulare probe in the assay. Regarding clarithromycin resistance, NTM-DR detected rrl mutations in 52 isolates and yielded 99.3% (144/145) and 98.6% (143/145) concordant results with sequencing and DST, respectively. NTM-DR sensitivity and specificity in the detection of clarithromycin resistance were 96.3% (52/54) and 100% (91/91), respectively. The NTM-DR yielded accurate erm(41) genotype results for all 87 M. abscessus isolates. Regarding amikacin resistance, NTM-DR detected rrs mutations in five isolates and yielded 99.3% (144/145) and 97.9% (142/145) concordant results with sequencing and DST, respectively. Our results indicate that the NTM-DR assay is a straightforward and accurate approach for discriminating MAC and M. abscessus (sub)species and for detecting clarithromycin and amikacin resistance mutations and that it is a useful tool in the clinical setting.

20.
Immune Netw ; 19(2): e13, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31089440

RESUMO

6-kDa early secretory antigenic target (ESAT6), a virulent factor of Mycobacterium tuberculosis, is involved in immune regulation. However, the underlying mechanism behind the activation and maturation of dendritic cells (DCs) by ESAT6 remains unclear. In this study, we investigated the effect on TLRs signaling on the regulation of ESAT6-induced activation and maturation of DCs. ESAT6 induced production of IL-6, TNF-α, and IL-12p40 in bone marrow-derived dendritic cells (BMDCs) from wild-type and TLR2-deficient mice, with this induction abolished in TLR4-deficient cells. NF-κB is essential for the ESAT6-induced production of the cytokines in BMDCs. TLR4 was also required for ESAT6-induced activation of NF-κB and MAPKs in BMDCs. ESAT6 additionally upregulated the expression of surface molecules CD80, CD86, and MHC-II, and also promoted the ability of CD4+ T cells to secrete IFN-γ via the TLR4-dependent pathway. Our findings suggest that TLR4 is critical in the activation and maturation of DCs in response to ESAT6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA