Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Genet Med ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33299146

RESUMO

PURPOSE: This study aimsed to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."

2.
Am J Hum Genet ; 107(6): 1062-1077, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217309

RESUMO

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.

3.
Bone ; 142: 115705, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33141070

RESUMO

Microdeletions within 1q24 have been associated with growth deficiency, varying intellectual disability, and skeletal abnormalities. The candidate locus responsible for the various phenotypic features of this syndrome has previously been predicted to lie in the area of 1q24.3, but molecular evidence of the causative gene remains elusive. Here, we report two additional patients carrying the smallest reported 1q24 deletion to date. Patient 1 exhibited intrauterine growth retardation, shortening of the long bones, frontal bossing, microstomia, micrognathia, and a language acquisition delay. Her mother, Patient 2, displayed a broad forehead and nasal bridge, thick supraorbital ridges, and toe brachydactyly, along with learning disability and language acquisition delay. The microdeletion encompasses a 94 Kb region containing exon 14 and portions of the surrounding introns of the gene encoding dynamin 3 (DNM3), resulting in an in-frame loss of 38 amino acids. This microdeletion site also contains a long non-coding RNA (DNM3OS) and three microRNAs (miR-214, miR-199A2, and miR-3120). Following culture of patient-derived and control fibroblasts, molecular analyses were performed to determine expression levels of genes affected by the heterozygous deletion. Results show decreased expression of DNM3OS and miR-214-3p in patient fibroblasts cultured in an osteogenic induction medium. Overall, our data provide further evidence to support a functional role for non-coding RNAs in regulating the skeletal phenotype, and the potential of a functionally-impaired DNM3 protein causing the non-skeletal disease pathogenesis.

4.
Eur J Hum Genet ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879452

RESUMO

Germline pathogenic variants in AMER1 cause osteopathia striata with cranial sclerosis (OSCS: OMIM 300373), an X-linked sclerosing bone disorder. Female heterozygotes exhibit metaphyseal striations in long bones, macrocephaly, cleft palate, and, occasionally, learning disability. Male hemizygotes typically manifest the condition as fetal or neonatal death. Somatically acquired variants in AMER1 are found in neoplastic tissue in 15-30% of patients with Wilms tumor; however, to date, only one individual with OSCS has been reported with a Wilms tumor. Here we present four cases of Wilms tumor in unrelated individuals with OSCS, including the single previously published case. We also report the first case of bilateral Wilms tumor in a patient with OSCS. Tumor tissue analysis showed no clear pattern of histological subtypes. In Beckwith-Wiedemann syndrome, which has a known predisposition to Wilms tumor development, clinical protocols have been developed for tumor surveillance. In the absence of further evidence, we propose a similar protocol for patients with OSCS to be instituted as an initial precautionary approach to tumor surveillance. Further evidence is needed to refine this protocol and to evaluate the possibility of development of other neoplasms later in life, in patients with OSCS.

5.
Hum Mutat ; 41(11): 1999-2011, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32906212

RESUMO

Clinical and genetic features of five unrelated patients with de novo pathogenic variants in the synaptic vesicle-associated membrane protein 2 (VAMP2) reveal common features of global developmental delay, autistic tendencies, behavioral disturbances, and a higher propensity to develop epilepsy. For one patient, a cognitively impaired adolescent with a de novo stop-gain VAMP2 mutation, we tested a potential treatment strategy, enhancing neurotransmission by prolonging action potentials with the aminopyridine family of potassium channel blockers, 4-aminopyridine and 3,4-diaminopyridine, in vitro and in vivo. Synaptic vesicle recycling and neurotransmission were assayed in neurons expressing three VAMP2 variants by live-cell imaging and electrophysiology. In cellular models, two variants decrease both the rate of exocytosis and the number of synaptic vesicles released from the recycling pool, compared with wild-type. Aminopyridine treatment increases the rate and extent of exocytosis and total synaptic charge transfer and desynchronizes GABA release. The clinical response of the patient to 2 years of off-label aminopyridine treatment includes improved emotional and behavioral regulation by parental report, and objective improvement in standardized cognitive measures. Aminopyridine treatment may extend to patients with pathogenic variants in VAMP2 and other genes influencing presynaptic function or GABAergic tone, and tested in vitro before treatment.

6.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32738225

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Assuntos
Aspartato-tRNA Ligase/genética , Mutação com Ganho de Função/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Aminoacil-RNA de Transferência/genética , Alelos , Aminoacil-tRNA Sintetases/genética , Linhagem Celular , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Linhagem , RNA de Transferência/genética , Células-Tronco/fisiologia
7.
Genet Med ; 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814848
9.
J Med Genet ; 57(10): 717-724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32152250

RESUMO

BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.

10.
Orphanet J Rare Dis ; 15(1): 73, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183856

RESUMO

BACKGROUND: Cardiovascular disease frequently causes morbidity and mortality in mucopolysaccharidoses (MPS); however, cardiovascular anatomy and dysfunction in MPS IVA (Morquio A disease) is not well described. Consequently, the study aimed to compare carotid artery structure and elasticity of MPS IVA patients with other MPS patients and healthy control subjects, and quantitate frequency of MPS IVA cardiac structural and functional abnormalities. METHODS: Prospective, multi-center echocardiogram and carotid ultrasound evaluations of 12 Morquio A patients were compared with other MPS and healthy control subjects. Average differences between groups were adjusted for age, sex, and height with robust variance estimation for confidence intervals and P-values. RESULTS: Morquio A patients demonstrated significantly higher (P < 0.001) adjusted carotid intima-media thickness (cIMT), mean (SD) of 0.56 mm (0.03) compared to control subjects, 0.44 mm (0.04). The Morquio A cohort had significantly greater adjusted carotid elasticity (carotid cross-sectional compliance + 43%, P < 0.001; carotid incremental elastic modulus - 33%, P = 0.003) than control subjects and other MPS patients. Aortic root dilatation was noted in 56% of the Morquio A cohort, which also had highly prevalent mitral (73%) and aortic (82%) valve thickening, though hemodynamically significant valve dysfunction was less frequent (9%). CONCLUSIONS: Increased carotid elasticity in Morquio A patients is an unexpected contrast to the reduced elasticity observed in other MPS. These Morquio A cIMT findings corroborate MPS IVA arterial post-mortem reports and are consistent with cIMT of other MPS. Aortic root dilatation in Morquio A indicates arterial elastin dysfunction, but their carotid hyperelasticity indicates other vascular intima/media components, such as proteoglycans, may also influence artery function. Studying MPS I and IVA model systems may uniquely illuminate the function of glycosaminoglycan-bearing proteoglycans in arterial health.

11.
Hum Genet ; 139(5): 575-592, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193685

RESUMO

RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Deleção Cromossômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Mutação , Adolescente , Adulto , Proteínas de Ciclo Celular/química , Criança , Pré-Escolar , Proteínas de Ligação a DNA/química , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Fenótipo , Conformação Proteica , Adulto Jovem
12.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928709

RESUMO

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Assuntos
Desmetilação do DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dioxigenases/deficiência , Adulto , Sequência de Aminoácidos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Dioxigenases/química , Dioxigenases/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Linhagem , Conformação Proteica , Homologia de Sequência , Adulto Jovem
13.
Eur J Med Genet ; 63(3): 103736, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31422286

RESUMO

Deletions and duplications involving the CNTN4 gene, which encodes for the contactin 4 protein, have been reported in children with autism spectrum disorder (ASD) and other neurodevelopmental phenotypes. In this study, we performed clinical and genetic characterization of three individuals from unrelated families with copy number variants (CNV) (one deletion and two duplications) within CNTN4. The patients exhibited cognitive delay (3/3), growth restriction (3/3), motor delay (2/3), and febrile seizure/epilepsy (2/3). In contrast to previous reports, all probands presented with speech apraxia or delay with no diagnosis of ASD. Parental studies for the proband with the deletion and one of the 2 probands with the duplication revealed paternal origin of the CNTN4 CNV. Interestingly, previously documented CNV involving this gene were mostly inherited from unaffected fathers, raising questions regarding reduced penetrance and potential parent-of-origin effect. Our findings are compared with previously reported patients and patients in the DECIPHER database. The speech impairment in the three probands suggests a role for CNTN4 in language development. We discuss potential factors contributing to phenotypic heterogeneity and reduced penetrance and attempt to find possible genotype-phenotype correlation. Larger cohorts are needed for comprehensive and unbiased phenotyping and molecular characterization that may lead to better understanding of the underlying mechanisms of reduced penetrance, variable expressivity, and potential parent-of-origin effect of copy number variants encompassing CNTN4.


Assuntos
Apraxias/genética , Disfunção Cognitiva/genética , Contactinas/genética , Epilepsia/genética , Transtornos do Crescimento/genética , Apraxias/fisiopatologia , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Disfunção Cognitiva/fisiopatologia , Variações do Número de Cópias de DNA , Epilepsia/fisiopatologia , Feminino , Duplicação Gênica , Estudos de Associação Genética , Transtornos do Crescimento/fisiopatologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Deleção de Sequência
14.
Clin Genet ; 97(3): 437-446, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721175

RESUMO

Sorting nexin 27 (SNX27) influences the composition of the cellular membrane via regulation of selective endosomal recycling. Molecular analysis indicates that SNX27 regulates numerous cellular processes through promiscuous interactions with its receptor cargos. SNX27 deficient (Snx27 -/- ) mice exhibit reduced embryonic survival, marked postnatal growth restriction and lethality. Haploinsufficient mice (Snx27 +/- ) show a less severe phenotype, with deficits in learning, memory, synaptic transmission and neuronal plasticity. One family previously reported with a homozygous SNX27 frameshift variant (c.515_516del;p.His172Argfs*6), exhibited infantile intractable myoclonic epilepsy, axial hypotonia, startle-like movements, cardiac septal defects, global developmental delay, failure to thrive, recurrent chest infections, persistent hypoxemia and early death secondary to respiratory failure. Here, we report two additional patients with compound heterozygous SNX27 variants, that are predicted to be damaging: (a) c.510C>G;p.Tyr170* and c.1295G>A;p.Cys432Tyr, and (b) c.782dupT;p.Leu262Profs*6 and c.989G>A;p.Arg330His. They exhibit global developmental delay, behavioral disturbance, epilepsy, some dysmorphic features and subcortical white matter abnormalities. In addition, possible connective tissue involvement was noted. Epilepsy, developmental delays and subcortical white matter abnormalities appear to be core features of SNX27-related disorders. We correlate the observed phenotype with available in vitro, in vivo and proteomic data and suggest additional possible molecular mediators of SNX27-related pathology.

15.
Eur J Hum Genet ; 27(10): 1611-1618, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278393

RESUMO

The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each. Seven probands were identically heterozygous for a recurrent substitution, p.(Val837Met), in TRPM3's S4-S5 linker region, a conserved domain proposed to undergo conformational change during gated channel opening. The eighth individual was heterozygous for a proline substitution, p.(Pro937Gln), at the boundary between TRPM3's flexible pore-forming loop and an adjacent alpha-helix. General-population truncating variants and microdeletions occur throughout TRPM3, suggesting a pathomechanism other than simple haploinsufficiency. We conclude that de novo variants in TRPM3 are a cause of intellectual disability and epilepsy.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Canais de Cátion TRPM/genética , Adolescente , Alelos , Criança , Pré-Escolar , Facies , Feminino , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Índice de Gravidade de Doença , Canais de Cátion TRPM/química
16.
Front Neurosci ; 13: 394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133775

RESUMO

Broad-scale untargeted biochemical phenotyping is a technology that supplements widely accepted assays, such as organic acid, amino acid, and acylcarnitine analyses typically utilized for the diagnosis of inborn errors of metabolism. In this study, we investigate the analyte changes associated with 4-aminobutyrate aminotransferase (ABAT, GABA transaminase) deficiency and treatments that affect GABA metabolism. GABA-transaminase deficiency is a rare neurodevelopmental and neurometabolic disorder caused by mutations in ABAT and resulting in accumulation of GABA in the cerebrospinal fluid (CSF). For that reason, measurement of GABA in CSF is currently the primary approach to diagnosis. GABA-transaminase deficiency results in severe developmental delay with intellectual disability, seizures, and movement disorder, and is often associated with death in childhood. Using an untargeted metabolomics platform, we analyzed EDTA plasma, urine, and CSF specimens from four individuals with GABA-transaminase deficiency to identify biomarkers by comparing the biochemical profile of individual patient samples to a pediatric-centric population cohort. Metabolomic analyses of over 1,000 clinical plasma samples revealed a rich source of biochemical information. Three out of four patients showed significantly elevated levels of the molecule 2-pyrrolidinone (Z-score ≥2) in plasma, and whole exome sequencing revealed variants of uncertain significance in ABAT. Additionally, these same patients also had elevated levels of succinimide in plasma, urine, and CSF and/or homocarnosine in urine and CSF. In the analysis of clinical EDTA plasma samples, the levels of succinimide and 2-pyrrolidinone showed a high level of correlation (R = 0.73), indicating impairment in GABA metabolism and further supporting the association with GABA-transaminase deficiency and the pathogenicity of the ABAT variants. Further analysis of metabolomic data across our patient population revealed the association of elevated levels of 2-pyrrolidinone with administration of vigabatrin, a commonly used anti-seizure medication and a known inhibitor of GABA-transaminase. These data indicate that anti-seizure medications may alter the biochemical and metabolomic data, potentially impacting the interpretation and diagnosis for the patient. Further, these data demonstrate the power of combining broad scale genotyping and phenotyping technologies to diagnose inherited neurometabolic disorders and support the use of metabolic phenotyping of plasma to screen for GABA-transaminase deficiency.

17.
Neurogenetics ; 20(3): 129-143, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31041561

RESUMO

We previously reported a pathogenic de novo p.R342W mutation in the transcriptional corepressor CTBP1 in four independent patients with neurodevelopmental disabilities [1]. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CTBP1 mutation. Within this cohort, we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia, and tooth enamel defects present in most patients. The R342W mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin-modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cell lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Adolescente , Oxirredutases do Álcool/metabolismo , Alelos , Apoptose , Ataxia/complicações , Ataxia/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Glioblastoma/genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Fenótipo , Ligação Proteica , Proteômica , Anormalidades Dentárias/complicações , Anormalidades Dentárias/genética , Adulto Jovem
18.
Mol Genet Genomic Med ; 7(7): e00733, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070020

RESUMO

BACKGROUND: Site-1 Protease (S1P) is a Golgi-resident protein required for the activation of regulatory proteins that drive key cellular functions, including, the unfolded protein response (UPR) and lipid and cholesterol biosynthesis. While disruptions in S1P function have been widely characterized in animal models, to date, the implications of disrupted S1P function in human disease states are not completely known. METHODS: The patient and both parents underwent whole exome and mitochondrial DNA sequencing, and Sanger sequencing was used to confirm the mutation. Western blotting and immunofluorescence studies were performed on either proband-derived fibroblasts or on an established cell line to assess protein expression and cellular localization of the mutated S1P protein. Quantitative real-time PCR and luciferase reporter assays were used to examine activation of S1P target pathways in the context of the S1P mutation. RESULTS: We describe a female patient with a de novo heterozygous missense mutation in the transmembrane domain of S1P (p. Pro1003Ser). The patient presented to our neuromuscular clinic with episodic, activity-induced, focal myoedema and myalgias with hyperCKemia. Her clinical phenotype was complex and included gastrointestinal hypomotility, ocular migraines, and polycystic ovary syndrome. Molecular analysis using proband-derived fibroblasts and cell lines harboring the Pro1003Ser mutation demonstrated increased activation of UPR and lipid and cholesterol regulatory pathways and localization of S1P Pro1003Ser in the Golgi. CONCLUSION: These findings suggest a critical function for S1P in several human organ systems and implicate an important role for S1P in various human disease states.


Assuntos
Creatina Quinase/sangue , Mutação de Sentido Incorreto , Mialgia/genética , Fenótipo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Células Cultivadas , Colesterol/metabolismo , Edema/genética , Edema/patologia , Feminino , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Mialgia/patologia , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Síndrome , Adulto Jovem
19.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982611

RESUMO

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Assuntos
Surdez/congênito , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Variação Genética , Glipicanas/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/patologia , Adulto , Criança , Pré-Escolar , Surdez/genética , Surdez/patologia , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem
20.
Eur J Hum Genet ; 27(8): 1225-1234, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30976111

RESUMO

The DOCK3 gene encodes the Dedicator of cytokinesis 3 (DOCK3) protein, which belongs to the family of guanine nucleotide exchange factors and is expressed almost exclusively in the brain and spinal cord. We used whole exome sequencing (WES) to investigate the molecular cause of developmental delay and hypotonia in three unrelated probands. WES identified truncating and splice site variants in Patient 1 and compound heterozygous and homozygous missense variants in Patients 2 and 3, respectively. We studied the effect of the three missense variants in vitro by using site-directed mutagenesis and pull-down assay and show that the induction of Rac1 activation was significantly lower in DOCK3 mutant cells compared with wild type human DOCK3 (P < 0.05). We generated a protein model to further examine the effect of the two missense variants within or adjacent to the DHR-2 domain in DOCK3 and this model supports pathogenicity. Our results support a loss of function mechanism but the data on the patients with missense variants should be cautiously interpreted because of the variability of the phenotypes and limited number of cases. Prior studies have described DOCK3 bi-allelic loss of function variants in two families with ataxia, hypotonia, and developmental delay. Here, we report on three patients with DOCK3-related developmental delay, wide-based or uncoordinated gait, and hypotonia, further supporting DOCK3's role in a neurodevelopmental syndrome and expanding the spectrum of phenotypic and genotypic variability.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação com Perda de Função , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Sequenciamento Completo do Exoma/métodos , Criança , Pré-Escolar , Feminino , Genótipo , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Proteínas do Tecido Nervoso/química , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA