Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739282

RESUMO

Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína de Replicação A/metabolismo , Thermoplasmales/enzimologia , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Sítios de Ligação , Pinças Ópticas
2.
PLoS Pathog ; 16(4): e1008407, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32240278

RESUMO

Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/farmacologia , Núcleo Celular/virologia , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Vírus da Influenza A/genética , RNA Mensageiro/genética , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
3.
FASEB J ; 34(1): 386-398, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914653

RESUMO

To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.


Assuntos
Brônquios/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Senescência Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Telômero/fisiologia , Adulto , Brônquios/fisiologia , Divisão Celular , Células Cultivadas , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Telomerase/metabolismo , Encurtamento do Telômero
4.
Aging Cell ; 18(4): e12979, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152494

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is characterized by accelerated senescence due to a de novo mutation in the LMNA gene. The mutation produces an abnormal lamin A protein called progerin that lacks the splice site necessary to remove a farnesylated domain. Subsequently, progerin accumulates in the nuclear envelope, disrupting nuclear architecture, chromatin organization, and gene expression. These alterations are often associated with rapid telomere erosion and cellular aging. Here, we further characterize the cellular and molecular abnormalities in HGPS cells and report a significant reversal of some of these abnormalities by introduction of in vitro transcribed and purified human telomerase (hTERT) mRNA. There is intra-individual heterogeneity of expression of telomere-associated proteins DNA PKcs/Ku70/Ku80, with low-expressing cells having shorter telomeres. In addition, the loss of the heterochromatin marker H3K9me3 in progeria is associated with accelerated telomere erosion. In HGPS cell lines characterized by short telomeres, transient transfections with hTERT mRNA increase telomere length, increase expression of telomere-associated proteins, increase proliferative capacity and cellular lifespan, and reverse manifestations of cellular senescence as assessed by ß-galactosidase expression and secretion of inflammatory cytokines. Unexpectedly, mRNA hTERT also improves nuclear morphology. In combination with the farnesyltransferase inhibitor (FTI) lonafarnib, hTERT mRNA promotes HGPS cell proliferation. Our findings demonstrate transient expression of human telomerase in combination with FTIs could represent an improved therapeutic approach for HGPS.


Assuntos
Fibroblastos/metabolismo , Progéria/metabolismo , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Adolescente , Adulto , Idoso , Linhagem Celular , Senescência Celular/genética , Criança , Pré-Escolar , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Lamina Tipo A/metabolismo , Masculino , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Progéria/tratamento farmacológico , Progéria/patologia , Piridinas/farmacologia , Piridinas/uso terapêutico , RNA Mensageiro/genética , Telomerase/genética , Telômero/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Homeostase do Telômero/genética , Transfecção
5.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L313-L327, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722564

RESUMO

While primary cystic fibrosis (CF) and non-CF human bronchial epithelial basal cells (HBECs) accurately represent in vivo phenotypes, one barrier to their wider use has been a limited ability to clone and expand cells in sufficient numbers to produce rare genotypes using genome-editing tools. Recently, conditional reprogramming of cells (CRC) with a Rho-associated protein kinase (ROCK) inhibitor and culture on an irradiated fibroblast feeder layer resulted in extension of the life span of HBECs, but differentiation capacity and CF transmembrane conductance regulator (CFTR) function decreased as a function of passage. This report details modifications to the standard HBEC CRC protocol (Mod CRC), including the use of bronchial epithelial cell growth medium, instead of F medium, and 2% O2, instead of 21% O2, that extend HBEC life span while preserving multipotent differentiation capacity and CFTR function. Critically, Mod CRC conditions support clonal growth of primary HBECs from a single cell, and the resulting clonal HBEC population maintains multipotent differentiation capacity, including CFTR function, permitting gene editing of these cells. As a proof-of-concept, CRISPR/Cas9 genome editing and cloning were used to introduce insertions/deletions in CFTR exon 11. Mod CRC conditions overcome many barriers to the expanded use of HBECs for basic research and drug screens. Importantly, Mod CRC conditions support the creation of isogenic cell lines in which CFTR is mutant or wild-type in the same genetic background with no history of CF to enable determination of the primary defects of mutant CFTR.


Assuntos
Brônquios/metabolismo , Diferenciação Celular , Fibrose Cística/metabolismo , Células-Tronco Multipotentes/metabolismo , Células 3T3 , Animais , Brônquios/patologia , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Reprogramação Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística , Edição de Genes , Humanos , Camundongos , Células-Tronco Multipotentes/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...