Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Talanta ; 221: 121431, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076062


Uranium ore is mined and milled to produce uranium ore concentrate (UOC), a regulated product of the nuclear fuel cycle. Diversion of UOC from the fuel cycle into possible weapons production is a key concern in global nonproliferation efforts. As such, the ability to trace the origin of seized nuclear materials is imperative to law enforcement efforts. Although isotopic signatures of UOCs have proven fruitful to pinpoint sample provenance, new isotopic signatures are needed because most existing isotopic signatures are not indicative of the original ore body from which the U is derived. In this work, we developed a new method to separate samarium (Sm) from a U-rich sample matrix and report the first Sm isotope compositions of 32 UOCs derived from a variety of worldwide uranium mines. Relative to terrestrial standards, approximately half the UOCs have resolved and anticorrelated 149Sm-150Sm isotope compositions, consistent with the capture of thermal neutrons by 149Sm in the ore body. The UOCs with anomalous Sm isotope compositions tend to derive from older (~>1.5Ga) and higher-grade ore bodies, although other factors, such as the presence of neutron moderators like water, also play a role. Nonetheless, the Sm isotope compositions of UOCs directly reflects the neutron fluence over the history of the original ore body and can be used to discern different geologic conditions associated with that ore body. As such, this work demonstrates the potential use of Sm isotopes as a novel nuclear forensics signature for origin assessment of UOCs.

Sci Adv ; 7(40): eabg8329, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586847


Calcium-aluminum­rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V­10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V­10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.

Geochim Cosmochim Acta ; 263: 215-234, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33353988


Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that provide crucial information about the isotopic reservoirs present in the early Solar System. For a variety of elements, CAIs have isotope compositions that are uniform yet distinct from later formed solid material. However, despite being the most abundant metal in the Solar System, the isotopic composition of Fe in CAIs is not well constrained. In an attempt to determine the Fe isotopic compositions of CAIs, we combine extensive work from a previously studied CAI sample set with new isotopic work characterizing mass-dependent and mass-independent (nucleosynthetic) signatures in Mg, Ca, and Fe. This investigation includes work on three mineral separates of the Allende CAI Egg 2. For all isotope systems investigated, we find that in general, fine-grained CAIs exhibit light mass-dependent isotopic signatures relative to terrestrial standards, whereas igneous CAIs have heavier isotopic compositions relative to the fine-grained CAIs. Importantly, the mass-dependent Fe isotope signatures of bulk CAIs show a range of both light (fine-grained CAIs) and heavy (igneous CAIs) isotopic signatures relative to bulk chondrites, suggesting that Fe isotope signatures in CAIs largely derive from mass fractionation events such as condensation and evaporation occurring in the nebula. Such signatures show that a significant portion of the secondary alteration experienced by CAIs, particularly prevalent in fine-grained inclusions, occurred in the nebula prior to accretion into their respective parent bodies. Regarding nucleosynthetic Fe isotope signatures, we do not observe any variation outside of analytical uncertainty in bulk CAIs compared to terrestrial standards. In contrast, all three Egg 2 mineral separates display resolved mass-independent excesses in 56Fe compared to terrestrial standards. Furthermore, we find that the combined mass-dependent and nucleosynthetic Fe isotopic compositions of the Egg 2 mineral separates are well correlated, likely indicating that Fe indigenous to the CAI is mixed with less anomalous Fe, presumably from the solar nebula. Thus, these reported nucleosynthetic anomalies may point in the direction of the original Fe isotope composition of the CAI-forming region, but they likely only provide a minimum isotopic difference between the original mass-independent Fe isotopic composition of CAIs and that of later formed solids.