Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 17(1): e1900478, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713998

RESUMO

The in vitro cytotoxic activity on human cancer cell lines of sixteen commercial EOs such as Aloysia citriodora, Boswellia sacra, Boswellia serrata, Cinnamomum zeylanicum, Cistus ladanifer, Citrus × aurantium, Citrus limon, Citrus sinensis, Cymbopogon citratus, Foeniculum vulgare, Illicium verum, Litsea cubeba, Satureja montana, Syzygium aromaticum, Thymus capitatus and Thymus vulgaris was performed using the MTT reduction assay. The screening was carried out on human cancer cells of breast adenocarcinoma (MCF7, T47D and MDA-MB-231), chronic myelogenous erythroleukemia (K562) and neuroblastoma cell lines (SH-SY5Y). C. zeylanicum and L. cubeba EOs were the most active on almost all the cell lines studied and thus could be promising as an anticancer agent. These two species showed a difference in their composition even though they belong to the Lauraceae family. Almost 57 % of the true cinnamon composition was made of (E)-cinnamaldehyde, while L. cubeba showed citral as the major compound (68.9 %). The K562 cells were the most sensitive to these oils with an IC50 ranging from 5.2 parts-per million (ppm) (C. zeylanicum) to 11.1 ppm (L. cubeba). The latter oil also showed an important cytotoxicity on MDA-MB-231 (13.4 ppm).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/farmacologia , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Maturitas ; 99: 1-9, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28364860

RESUMO

BACKGROUND: Estetrol (E4) is a natural estrogen produced solely during human pregnancy. E4 is suitable for clinical use since it acts as a selective estrogen receptor modulator. In clinical trials E4 has been seen to have little or no effect on coagulation. Hence, it is interesting to investigate whether E4 alters endothelial-dependent fibrinolysis. OBJECTIVES: We studied the effects of E4 on the fibrinolytic system and whether this could influence the ability of endothelial cells to migrate. In addition, we compared the effects of E4 with those of 17ß-estradiol (E2). STUDY DESIGN: Human umbilical vein endothelial cells (HUVEC) were obtained from healthy women. Expression of plasminogen-activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (u-PA) and tissue plasminogen activator (t-PA) proteins was evaluated by Western blot analysis. Endothelial cell migration was studied by razor-scrape horizontal and multiwell insert systems assays. RESULTS: E4 increased the expression of t-PA, u-PA and PAI-1 in HUVEC, but less so than did equimolar amounts of E2. The effects of E4 on t-PA, u-PA and PAI-1 were mediated by the induction of the early-immediate genes c-Jun and c-Fos. E4 in combination with E2 antagonized the effects induced by pregnancy-like E2 concentrations but did not impair the effects of postmenopausal-like E2 levels. We also found that the increased synthesis of PAI-1, u-PA and t-PA induced by E2 and E4 is important for horizontal and three-dimensional migration of HUVEC. CONCLUSIONS: These results support the hypothesis that E4 acts as an endogenous selective estrogen receptor modulator (SERM), controlling the fibrinolytic system and endothelial cell migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Estetrol/farmacologia , Fibrinólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Ativador de Plasminogênio Tecidual/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/efeitos dos fármacos , Western Blotting , Células Cultivadas , Células Endoteliais , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27746764

RESUMO

The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgen receptor (AR) is expressed in approximately 70 to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple-negative breast cancers. Recent studies have associated the actin-binding proteins of the ezrin-radixin-moesin (ERM) family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T), dihydrotestosterone (DHT), and dehydroepiandrosterone (DHEA) may regulate breast cancer cell motility and invasion through the control of actin remodeling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER), while the non-aromatizable androgen - DHT - only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer and, eventually, to develop new strategies for breast cancer treatment.

4.
Mol Cell Endocrinol ; 430: 1-11, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27130522

RESUMO

Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARß, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARß in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Paxilina/metabolismo , Tretinoína/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP72 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo
5.
Mol Cell Endocrinol ; 430: 56-67, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27095481

RESUMO

Breast cancer is the major cause of cancer-related death in women. Its treatment is particularly difficult when metastasis occurs. The ability of cancer cells to move and invade the surrounding environment is the basis of local and distant metastasis. Cancer cells are able to remodel the actin cytoskeleton, which requires the recruitment of numerous structural and regulatory proteins that modulate actin filaments dynamics, including Paxillin or the Neural Wiskott-Aldrich Syndrome Protein (N-WASP). We show that 17-ß estradiol (E2) induces phosphorylation of Paxillin and its translocation toward membrane sites where focal adhesion complexes are assembled. This cascade is triggered by a Gαi1/Gß protein-dependent signaling of estrogen receptor α (ERα) to c-Src, focal adhesion kinase (FAK) and Paxillin. Within this complex, activated Paxillin recruits the small GTPase Cdc42, which triggers N-WASP phosphorylation. This results in the redistribution of Arp2/3 complexes at sites where membrane structures related to cell movement are formed. Recruitment of Paxillin, Cdc42 and N-WASP is necessary for cell adhesion, migration and invasion induced by E2 in breast cancer cells. In parallel, we investigated whether Raloxifene (RAL), a selective estrogen receptor modulator (SERMs), could inhibit or revert the effects of E2 in breast cancer cell movement. We found that, in the presence of E2, RAL acts as an ER antagonist and displays an inhibitory effect on estrogen-promoted cell adhesion and migration via FAK/Paxillin/N-WASP. Our findings identify an original mechanism through which estrogen regulates breast cancer cell motility and invasion via Paxillin. These results may have clinical relevance for the development of new therapeutic strategies for cancer treatment.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estrogênios/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Paxilina/metabolismo , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Humanos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA