Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Int J Biol Macromol ; 242(Pt 2): 124800, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37178880

RESUMO

Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.

3.
J Environ Manage ; 338: 117779, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023603

RESUMO

Environmental pollution has become a transnational issue that impacts ecosystems, soil, water, and air and is directly related to human health and well-being. Chromium pollution decreases the development of plant and microbial populations. It warrants the need to remediate chromium-contaminated soil. Decontaminating chromium-stressed soils via phytoremediation is a cost-effective and environmentally benign method. Using multifunctional plant growth-promoting rhizobacteria (PGPR) lower chromium levels and facilitates chromium removal. PGPR work by altering root architecture, secreting chemicals that bind metals in the rhizosphere, and reducing phytotoxicity brought on by chromium. The present study aimed to investigate the chromium bioremediation capacity of metal-tolerant PGPR isolate while promoting the growth of chickpeas in the presence of varying levels of chromium (15.13, 30.26, and 60.52 mg/kg of chromium). The isolate, Mesorhizobium strain RC3, substantially reduced chromium content (60.52 mg/kg) in the soil. It enhanced the root length by 10.87%, the shoot length by 12.38%, the number of nodules by 6.64%, and nodule dry weight by 13.77% at 90 days. After 135 days of sowing, more improvement in the root length (18.05), shoot length (21.60%)the chlorophyll content (6.83%), leghaemoglobin content (9.47%), and the highest growth in the crop seed yield (27.45%) and crop protein content (16.83%)The isolate reduced chromium accumulation in roots, shoots, and grains chickpea. Due to chromium bioremediation and its plant growth-promoting and chromium-attenuating qualities, Mesorhizobium strain RC3 could be used as a green bioinoculant for plant growth promotion under chromium stress.


Assuntos
Cicer , Mesorhizobium , Poluentes do Solo , Humanos , Cromo , Solo/química , Cicer/microbiologia , Ecossistema , Poluentes do Solo/toxicidade , Raízes de Plantas , Microbiologia do Solo , Biodegradação Ambiental
4.
Bioresour Technol ; 380: 129094, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100295

RESUMO

Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.


Assuntos
Dióxido de Carbono , Microalgas , Hidrodinâmica , Biocombustíveis , Biomassa
5.
J Hazard Mater ; 452: 131325, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058839

RESUMO

In this study, the functionalized smectitic clay (SC)-based nanoscale hydrated zirconium oxide (ZrO-SC) was successfully synthesized and utilized for the adsorptive removal of levofloxacin (LVN) from an aqueous medium. The synthesized ZrO-SC and its precursors (SC and hydrated zirconium oxide (ZrO(OH)2)) were extensively characterized using various analytical methods to get insight into their physicochemical properties. The results of stability investigation confirmed that ZrO-SC composite is chemically stable in strongly acidic medium. The surface measurements revealed that ZrO impregnation to SC resulted in an increased surface area (six-fold higher than SC). The maximum sorption capacity of ZrO-SC for LVN was 356.98 and 68.87 mg g-1 during batch and continuous flow mode studies, respectively. The mechanistic studies of LVN sorption onto ZrO-SC revealed that various sorption mechanisms, such as interlayer complexation, π-π interaction, electrostatic interaction, and surface complexation were involved. The kinetic studies of ZrO-SC in the continuous-flow mode indicated the better applicability of Thomas model. However, the good fitting of Clark model suggested the multi-layer sorption of LVN. The cost estimation of the studied sorbents was also assessed. The obtained results indicate that ZrO-SC is capable of removing LVN and other emergent pollutants from water at a reasonable cost.

6.
Chemosphere ; 325: 138236, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36868419

RESUMO

The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.


Assuntos
Restaurantes , Águas Residuárias , Gorduras , Macrolídeos/análise , Hidrocarbonetos/análise , Esgotos
7.
Chemosphere ; 325: 138392, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921772

RESUMO

The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.


Assuntos
Corantes , Águas Residuárias , Corantes/química , Violeta Genciana , Biodegradação Ambiental , Têxteis , Lacase/metabolismo
8.
Bioresour Technol ; 376: 128860, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907228

RESUMO

Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation.


Assuntos
Microalgas , Microalgas/metabolismo , Temperatura , Biocombustíveis , Pirólise , Biomassa , Água/química
9.
Chemosphere ; 324: 138311, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878368

RESUMO

A novel kinetic model has been developed to explain the degradation of total petroleum hydrocarbons. Microbiome engineered biochar amendment may result in a synergistic impact on degradation of total petroleum hydrocarbons (TPHs). Therefore, the present study analyzed the potential of hydrocarbon-degrading bacteria A designated as Aeromonas hydrophila YL17 and B as Shewanella putrefaciens Pdp11 morphological characterized as rod shaped, anaerobic and gram-negative immobilized on biochar, and the degradation efficiency was measured by gravimetric analysis and gas chromatography-mass spectrometry (GC-MS). Whole genome sequencing of both strains revealed the existence of genes responsible for hydrocarbon degradation. In 60 days remediation setup, the treatment consisting of immobilization of both strains on biochar proved more efficient with less half-life and better biodegradation potentials compared to biochar without strains for decreasing the content of TPHs and n-alkanes (C12-C18). Enzymatic content and microbiological respiration showed that biochar acted as a soil fertilizer and carbon reservoir and enhanced microbial activities. The removal efficiency of hydrocarbons was found to be a maximum of 67% in soil samples treated with biochar immobilized with both strains (A + B), followed by biochar immobilized with strain B 34%, biochar immobilized with strain A 29% and with biochar 24%, respectively. A 39%, 36%, and 41% increase was observed in fluorescein diacetate (FDA) hydrolysis, polyphenol oxidase and dehydrogenase activities in immobilized biochar with both strains as compared to control and individual treatment of biochar and strains. An increase of 35% was observed in the respiration rate with the immobilization of both strains on biochar. While a maximum colony forming unit (CFU/g) was found 9.25 with immobilization of both strains on biochar at 40 days of remediation. The degradation efficiency was due to synergistic effect of both biochar and bacteria based amendment on the soil enzymatic activity and microbial respiration.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Petróleo/análise , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo
10.
Virus Res ; 328: 199080, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36882131

RESUMO

Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.


Assuntos
Vírus de RNA , Viroses , Abelhas , Animais , Criação de Abelhas , Gema de Ovo , Vírus de RNA/genética
11.
Sci Total Environ ; 876: 162797, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907394

RESUMO

The increased water scarcity, depletion of freshwater resources, and rising environmental awareness are stressing for the development of sustainable wastewater treatment processes. Microalgae-based wastewater treatment has resulted in a paradigm shift in our approach toward nutrient removal and simultaneous resource recovery from wastewater. Wastewater treatment and the generation of biofuels and bioproducts from microalgae can be coupled to promote the circular economy synergistically. A microalgal biorefinery transforms microalgal biomass into biofuels, bioactive chemicals, and biomaterials. The large-scale cultivation of microalgae is essential for the commercialization and industrialization of microalgae biorefinery. However, the inherent complexity of microalgal cultivation parameters regarding physiological and illumination parameters renders it challenging to facilitate a smooth and cost-effective operation. Artificial intelligence (AI)/machine learning algorithms (MLA) offer innovative strategies for assessing, predicting, and regulating uncertainties in algal wastewater treatment and biorefinery. The current study presents a critical review of the most promising AI/MLAs that demonstrate a potential to be applied in microalgal technologies. The most commonly used MLAs include artificial neural networks, support vector machine, genetic algorithms, decision tree, and random forest algorithms. Recent developments in AI have made it possible to combine cutting-edge techniques from AI research fields with microalgae for accurate analysis of large datasets. MLAs have been extensively studied for their potential in microalgae detection and classification. However, the ML application in microalgal industries, such as optimizing microalgae cultivation for increased biomass productivity, is still in its infancy. Incorporating smart AI/ML-enabled Internet of Things (IoT) based technologies can help the microalgal industries to operate effectively with minimum resources. Future research directions are also highlighted, and some of the challenges and perspectives of AI/ML are outlined. As the world is entering the digitalized industrial era, this review provides an insightful discussion about intelligent microalgal wastewater treatment and biorefinery for researchers in the field of microalgae.


Assuntos
Microalgas , Purificação da Água , Inteligência Artificial , Biocombustíveis , Aprendizado de Máquina , Biotecnologia , Biomassa
12.
J Food Sci Technol ; 60(3): 1097-1106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908365

RESUMO

Soy isoflavone extracts are widely researched for their distinctive potential in contributing to various functional foods. The research work focuses on testing the toxicity of purified soy isoflavone extracts in mice models. With an agreement of the animal ethics, acute toxicity is firstly used to screen the effects of test compounds in mice for therapeutic purposes. Moreover, tests were conducted on BALB/c for estrogen in vivo and MCF7 for in vitro, screening active protection of liver cells, lipid peroxidation and scavenging free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH). Genistin and daidzin were found to be the two major compounds accounting for 47% and 35% of total purified soy isoflavones. The acute toxicity test results exhibited no effect against physiological accretion of BALB/c after 7-day administration with the given dose of 10 g/kgBW. Moreover, modified E-screen assay on MCF7 cells proved that the estrogen of isoflavone extracts induces cell proliferation by 15% compared with other non-steroid culture techniques. Therefore, this research contributes to helping researchers apply soy isoflavones in functional food, to alleviate the difficulties in menopausal symptoms for women in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05491-4.

13.
Prog Mol Biol Transl Sci ; 196: 261-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813361

RESUMO

Amyloid precursor protein (APP) is a membrane protein expressed in several tissues. The occurrence of APP is predominant in synapses of nerve cells. It acts as a cell surface receptor and plays a vital role as a regulator of synapse formation, iron export and neural plasticity. It is encoded by the APP gene that is regulated by substrate presentation. APP is a precursor protein activated by proteolytic cleavage and thereby generating amyloid beta (Aß) peptides which eventually form amyloid plaques that accumulate in Alzheimer's disease patients' brains. In this chapter, we highlight basic mechanism, structure, expression patterns and cleavage of amyloid plaques, and its diagnosis and potential treatment for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide , Proteínas de Membrana
14.
Chemosphere ; 322: 138152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36791812

RESUMO

Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.


Assuntos
Polivinil , Água , Polímeros , Filtração
15.
Carbohydr Polym ; 306: 120599, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746569

RESUMO

Pretreatment with pure, mixed, and diluted deep eutectic solvents (DESs) was evaluated for its effect on Napier grass through compositional and characterization studies. The morphological changes of biomass caused by pretreatment were analyzed by FTIR and XRD. The cellulose and hemicellulose content after pretreatment using mixed DES increased and decreased 1.29- and 4.25-fold, respectively, when compared to untreated Napier grass. The crystallinity index (CrI. %) of mixed DES sample increased due to the maximum removal of hemicellulose (76 %) and delignification of 62 %. The material costs of ChCl/FA and ChCl/LA for a single run are ≈2.16 USD and ≈1.65 USD, respectively. Pure DES showed that ChCl/LA pretreatment enhanced delignification efficiency and that ChCl/FA increased hemicellulose removal. It was estimated that a single run using ChCl/LA:ChCl/FA to achieve maximum hemicellulose and lignin removal would cost approximately ≈1.89 USD. Future work will evaluate the effect of DES mixture on enzyme digestibility and ethanol production from Napier grass. HYPOTHESES: Deep eutectic solvent (DES) pretreatment studies on the fractionation of lignocellulosic biomass have grown exponentially. The use of pure and diluted DES has been reported to improve saccharification efficiency, delignification, and cellulose retention (Gundupalli et al., 2022). These studies have reported maximum lignin removal but also a lower effect on hemicellulose removal from lignocellulosic biomass. It was hypothesized that mixing two pure DESs could result in maximum removal of hemicellulose and lignin after pretreatment. To our knowledge, no studies have been performed to investigate the efficiency of pretreatment using a DES mixture and compared the outcome with pure and diluted DESs. Furthermore, it was hypothesized that using two pure DESs in a mixed form could lower the material cost for each experimental run. Process efficiency was determined by compositional, XRD, and FTIR analysis. Avenues for future research include determining glucose and ethanol yields during the enzymatic saccharification and fermentation processes.


Assuntos
Celulose , Cenchrus , Lignina , Solventes Eutéticos Profundos , Solventes , Etanol , Biomassa , Hidrólise
16.
Environ Res ; 222: 115314, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738770

RESUMO

The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.


Assuntos
Cério , Nanopartículas , Dióxido de Carbono , Solventes Eutéticos Profundos , Cério/química , Solventes/química
17.
Environ Res ; 222: 115348, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731596

RESUMO

The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.


Assuntos
Gases de Efeito Estufa , Navios , Conservação dos Recursos Naturais , Conservação de Recursos Energéticos
18.
Environ Res ; 223: 115429, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746207

RESUMO

Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.


Assuntos
Celulose , Polímeros , Celulose/química , Estudos Prospectivos
19.
Environ Res ; 227: 115320, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706904

RESUMO

The present study develops a novel concept of using waste media as an algal nutrient resource compared to the usual growth media with the aid of growth kinetics study and metabolite production abilities. Food- and agri-compost wastes are compact structures with elemental compounds for microbial media. As a part of the study, environ-burden wastes (3:1) as a food source for photosynthetic algae as a substitute for the costly nutrient media were proposed. The environment-burden waste was also envisaged for macromolecule production, i.e., 99200 µg/ml lipid, 112.5 µg/ml protein, and 8.75 µg/ml carbohydrate with different dilutions of agri-waste, bold basal media (BBM), and Food waste, respectively. The fabricated growth kinetics and dynamics showcased the unstructured models of different photosynthetic algal growth phases and the depiction of productivity and kinetic parameters. The theoretical maximum biomass concentration (Xp) was found to be more (0.871) with diluted agricompost media than the usual BBM (0.697). The XLim values were found to be 0.362, 0.323 and 0.209 for BBM, diluted agri-compost media and diluted food waste media, respectively. Overall, the study proposes a cleaner approach of utilizing the wastes as growth media through a circular economy approach which eventually reduces the growth media cost with integrated macromolecule production capabilities.


Assuntos
Compostagem , Microalgas , Eliminação de Resíduos , Alimentos , Biocombustíveis , Biomassa
20.
Biotechnol Adv ; 63: 108095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608745

RESUMO

Identification of microalgae species is of importance due to the uprising of harmful algae blooms affecting both the aquatic habitat and human health. Despite this occurence, microalgae have been identified as a green biomass and alternative source due to its promising bioactive compounds accumulation that play a significant role in many industrial applications. Recently, microalgae species identification has been conducted through DNA analysis and various microscopy techniques such as light, scanning electron, transmission electron, and atomic force -microscopy. The aforementioned procedures have encouraged researchers to consider alternate ways due to limitations such as costly validation, requiring skilled taxonomists, prolonged analysis, and low accuracy. This review highlights the potential innovations in digital microscopy with the incorporation of both hardware and software that can produce a reliable recognition, detection, enumeration, and real-time acquisition of microalgae species. Several steps such as image acquisition, processing, feature extraction, and selection are discussed, for the purpose of generating high image quality by removing unwanted artifacts and noise from the background. These steps of identification of microalgae species is performed by reliable image classification through machine learning as well as deep learning algorithms such as artificial neural networks, support vector machines, and convolutional neural networks. Overall, this review provides comprehensive insights into numerous possibilities of microalgae image identification, image pre-processing, and machine learning techniques to address the challenges in developing a robust digital classification tool for the future.


Assuntos
Microalgas , Humanos , Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...