Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627280

RESUMO

A moisture sensor has been reported that detects invisibly small water droplets and distinguishes their particle size with high accuracy and high speed. This sensor uses narrow lines of dissimilar metals as electrodes, arranged with gaps of 0.5 to 10 µm. The working principle for this sensor is that it measures the galvanic current generated when a water droplet forms a bridge-like structure between the electrodes. In addition, the surface of the sensor was controlled by using hydrophilic polymer, GL, and hydrophobic polymer, PMMA. The study of the relationship between the contact angle, projected area of water droplets and current response from the sensor with a modified surface showed that in the case of GL, the contact angle was small (wettability increased) and the average value and distribution of the projected water droplet area and the sensor's response increased. This enhanced the sensor's sensitivity. On the other hand, in the case of PMMA, the contact angle was large (wettability decreased), the area of the water droplet and its distribution became small and the accuracy of discriminating the water droplet's diameter by the sensor enhanced. Therefore, by rendering sensor's surface hydrophilic and hydrophobic, the sensitivity and accuracy of the sensor could be enhanced.

2.
Sensors (Basel) ; 19(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641916

RESUMO

Here we report the aromatic vapor sensing performance of bitter melon shaped nanoporous fullerene C60 crystals that are self-assembled at a liquid-liquid interface between isopropyl alcohol and C60 solution in dodecylbenzene at 25 °C. Average length and center diameter of the crystals were ca. 10 µm and ~2 µm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a face-centered cubic (fcc) structure with cell dimension ca. a = 1.4272 nm, and V = 2.907 nm³, which is similar to that of the pristine fullerene C60. Transmission electron microscopy (TEM) confirmed the presence of a nanoporous structure. Quartz crystal microbalance (QCM) results showed that the bitter melon shaped nanoporous C60 performs as an excellent sensing system, particularly for aromatic vapors, due to their easy diffusion through the porous architecture and strong π⁻π interactions with the sp²-carbon.

3.
Phys Chem Chem Phys ; 20(27): 18873-18878, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29968876

RESUMO

A hierarchical heterostructure composed of silver nanoparticles (Ag-NPs: average diameter ∼10 nm) on fullerene nanorods (FNRs: average length ∼11 µm and average diameter ∼200 nm) was fabricated using a simple solution route. It was used as an effective single particle freestanding surface enhanced Raman scattering (SERS) substrate for the detection of target molecules (Rhodamine 6G: R6G). FNRs were formed ultra-rapidly (formation process completed in a few seconds) at a liquid-liquid interface of methanol and C60/mesitylene solution then Ag-NPs were grown directly on the surfaces of the FNRs by treatment with a solution of silver nitrate in ethanol. This unique hierarchical heterostructure allows efficient adsorption of target molecules also acting as an effective SERS substrate capable of detecting the adsorbed R6G molecules in the nanomolar concentration range. In this study, SERS spectra are acquired on an isolated single Ag-FNR for the detection of the absorbed molecule rather than from a bulk, large area film composed of silver/gold nanoparticles as used in conventional methods. Thus, this work provides a new approach for the design and fabrication of freestanding SERS substrates for molecular detection applications.

4.
ACS Appl Mater Interfaces ; 9(51): 44458-44465, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29210263

RESUMO

Fullerene C60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g-1 (at 5 mV s-1) and 290 F g-1 (at 1 A g-1) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g-1. The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

5.
Angew Chem Int Ed Engl ; 56(29): 8398-8401, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27930851

RESUMO

A method for controlling the self-assembly of fullerene C60 molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C60 nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing.

6.
Sci Technol Adv Mater ; 17(1): 483-492, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877898

RESUMO

We have investigated the textural properties, electrochemical supercapacitances and vapor sensing performances of bamboo-derived nanoporous carbon materials (NCM). Bamboo, an abundant natural biomaterial, was chemically activated with phosphoric acid at 400 °C and the effect of impregnation ratio of phosphoric acid on the textural properties and electrochemical performances was systematically investigated. Fourier transform-infrared (FTIR) spectroscopy confirmed the presence of various oxygen-containing surface functional groups (i.e. carboxyl, carboxylate, carbonyl and phenolic groups) in NCM. The prepared NCM are amorphous in nature and contain hierarchical micropores and mesopores. Surface areas and pore volumes were found in the range 218-1431 m2 g-1 and 0.26-1.26 cm3 g-1, respectively, and could be controlled by adjusting the impregnation ratio of phosphoric acid and bamboo cane powder. NCM exhibited electrical double-layer supercapacitor behavior giving a high specific capacitance of c.256 F g-1 at a scan rate of 5 mV s-1 together with high cyclic stability with capacitance retention of about 92.6% after 1000 cycles. Furthermore, NCM exhibited excellent vapor sensing performance with high sensitivity for non-aromatic chemicals such as acetic acid. The system would be useful to discriminate C1 and C2 alcohol (methanol and ethanol).

7.
ACS Appl Mater Interfaces ; 8(45): 31231-31238, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27775339

RESUMO

Carbon nanofibers (CNFs) with high surface area (820 m2/g) have been successfully prepared by a nanocasting approach using silica nanofibers obtained from chromonic liquid crystals as a template. CNFs with randomly oriented graphitic layers show outstanding electrochemical supercapacitance performance, exhibiting a specific capacitance of 327 F/g at a scan rate of 5 mV/s with a long life-cycling capability. Approximately 95% capacitance retention is observed after 1000 charge-discharge cycles. Furthermore, about 80% of capacitance is retained at higher scan rates (up to 500 mV/s) and current densities (from 1 to 10 A/g). The high capacitance of CNFs comes from their porous structure, high pore volume, and electrolyte-accessible high surface area. CNFs with ordered graphitic layers were also obtained upon heat treatment at high temperatures (>1500 °C). Although it is expected that these graphitic CNFs have increased electrical conductivity, in the present case, they exhibited lower capacitance values due to a loss in surface area during thermal treatment. High-surface-area CNFs can be used in sensing applications; in particular, they showed selective differential adsorption of volatile organic compounds such as pyridine and toluene. This behavior is attributed to the free diffusion of these volatile aromatic molecules into the pores of CNFs accompanied by interactions with sp2 carbon structures and other chemical groups on the surface of the fibers.

8.
Langmuir ; 32(47): 12511-12519, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27267221

RESUMO

Here, we report the structural and morphological modulation of fullerene C60 crystals induced by nonionic surfactants diglycerol monolaurate (C12G2) and monomyristate (C14G2). C60 crystals synthesized at a liquid-liquid interface comprising isopropyl alcohol (IPA) and a saturated solution of C60 in ethylbenzene (EB) exhibited a one-dimensional (1D) morphology with well-defined faceted structure. Average length and diameter of the faceted rods were ca. 4.8 µm and 747 nm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a hexagonal-close packed (hcp) structure with cell dimensions ca. a = 2.394 nm and c = 1.388 nm. The 1D rod morphology of C60 crystals was transformed into "Konpeito candy-like" crystals (average diameter ca. 1.2 µm) when the C60 crystals were grown in the presence of C12G2 or C14G2 surfactant (1%) in EB. The pXRD spectra of "Konpeito-like" crystals could be assigned to the face-centered cubic (fcc) phase with cell dimensions ca. a = 1.4309 nm (for C12G2) and a = 1.4318 nm (for C14G2). However, clusters or aggregates of C60 lacking a uniform morphology were observed at lower surfactant concentrations (0.1%), although these crystals exhibited an fcc crystal structure. The self-assembled 1D faceted C60 crystals and "Konpeito-like" C60 crystals exhibited intense photoluminescence (PL) (∼35 times greater than pC60) and a blue-shifted PL intensity maximum (∼15 nm) compared to those of pC60, demonstrating the potential use of this method for the control of the optoelectronic properties of fullerene nanostructures. The "Konpeito-like" crystals were transformed into high surface area nanoporous carbon with a graphitic microstructure upon heat-treatment at 2000 °C. The heat-treated samples showed enhanced electrochemical supercapacitance performance (specific capacitance is ca. 175 F g-1, which is about 20 times greater than pC60) with long cyclic stability demonstrating the potential of the materials in supercapacitor device fabrication.

9.
Chemistry ; 21(48): 17344-54, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26463001

RESUMO

Conjugated polymers with strong photophysical properties are used in many applications. A homopolymer (P1) and five new low band gap copolymers based on 4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) and acceptors 3,6-dithienyldiketopyrrolopyrrole (P2), phthalimide (P3), benzotriazole (P4), 4,7-dithienyl[1,2,3]triazolo[4,5g]quinoxaline (P5), and 2,5-dithienylthieno[3,4-b]pyrazine (P6) were prepared by means of Sonogashira polymerization. The characterization of polymers by using (1) H NMR, absorption, and emission spectroscopy is discussed. All polymers with high molecular weights (Mn ) of 16 000 to 89 000 g mol(-1) showed absorption maxima in the deep-red region (λ=630-760 nm) in solution and exhibited significant redshifts (up to 70 nm) in thin films. Polymers P2, P5, and P6 showed narrow optical band gaps of 1.38, 1.35, and 1.38 eV, respectively, which are significantly lower than that of P1 (1.63 eV). The HOMO and LUMO energy levels of the polymers were calculated by using cyclic voltammetry measurements. The LUMO energy levels of BODIPY-based alternating copolymers were independent of the acceptors; this suggests that the major factor that tunes the LUMO energy levels of the polymers could be the BODIPY core. All polymers showed selective and reproducible detection of volatile organic solvents, such as toluene and benzene, which could be used for developing sensors.

10.
J Nanosci Nanotechnol ; 15(3): 2394-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413674

RESUMO

Here we present self-assembled nanostructure of functional molecule fullerene (C60) at liquid-liquid interface. The nanostructured nanocrystals were grown at liquid-liquid interface of isopropyl alcohol (IPA) and C60 solution in butylbenzene under ambient condition of temperature and pressure, and characterized by Raman scattering, power X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal formation mechanism is driven by supersaturation related to the low solubility of C60 in IPA. A slow diffusion of IPA towards the C60 solution causes unsaturation of C60 at the liquid-liquid interface and consequently small clusters of C60 is formed at the interface, which acts as the nucleation site. Further diffusion of IPA supplies the C60 molecules from bulk to the interface promoting the crystal growth. Based on SEM and TEM observation, the average size of the individual hexagonal bipyramid nanocrystal is found to be ca. 1.4 µm and the average size of their assembly is found to be approximately 2 µm. XRD measurements have shown that these materials are crystalline with mixed face-centered cubic (cell dimension: a = 1.352 nm, and V = 2.475 nm3) and hexagonal (cell dimension: a = 1.452 nm, c = 1.207 nm, c/a = 0.831, and V = 2.475 nm3) structures. Raman scattering measurements showed two Ag and six Hg vibration bands, which are similar to those obtained in the pristine C60.

11.
Nanotechnology ; 26(20): 204002, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25912881

RESUMO

Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

12.
Angew Chem Int Ed Engl ; 54(3): 951-5, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25425340

RESUMO

Here we report the thermal conversion of one-dimensional (1D) fullerene (C60) single-crystal nanorods and nanotubes to nanoporous carbon materials with retention of the initial 1D morphology. The 1D C60 crystals are heated directly at very high temperature (up to 2000 °C) in vacuum, yielding a new family of nanoporous carbons having π-electron conjugation within the sp(2)-carbon robust frameworks. These new nanoporous carbon materials show excellent electrochemical capacitance and superior sensing properties for aromatic compounds compared to commercial activated carbons.

13.
ACS Appl Mater Interfaces ; 6(17): 15597-603, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25136819

RESUMO

We demonstrate ultrarapid interfacial formation of one-dimensional (1D) single-crystalline fullerene C60 nanorods at room temperature in 5 s. The nanorods of ∼ 11 µm in length and ∼ 215 nm in diameter are developed in a hexagonal close-pack crystal structure, contrary to the cubic crystal structure of pristine C60. Vibrational and electronic spectroscopy provide strong evidence that the nanorods are a van der Waals solid, as evidenced from the preservation of the electronic structure of the C60 molecules within the rods. Steady state optical spectroscopy reveals a dominance of charge transfer excitonic transitions in the nanorods. A significant enhancement of photogenerated charge carriers is observed in the nanorods in comparison to pristine C60, revealing the effect of shape on the photovoltaic properties. Due to their ultrarapid, large-scale, room-temperature synthesis with single-crystalline structure and excellent optoelectronic properties, the nanorods are expected to be promising for photosensitive devices applications.

14.
J Oleo Sci ; 63(3): 249-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24712086

RESUMO

We studied the effects of the spacer chain length of amino acid-based gemini surfactants on the formation of wormlike micelles in aqueous solutions. The surfactants used were synthesized by reacting dodecanoylglutamic acid anhydride with diamine compounds (ethylenediamine, pentanediamine, and octanediamine), and were abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). These surfactants yielded viscoelastic wormlike micellar solutions at pH 9 upon mixing with a cationic monomeric surfactant, hexadecyltrimethylammonium bromide (HTAB). We found that the rheological behavior was strongly dependent on the spacer chain length and HTAB concentration. When the shortest spacer chain analogue (12-G2G-12) was used, an increased HTAB concentration resulted in the following structural transformations of the micelles: (i) spherical or rodlike micelles; (ii) anionic wormlike micelles exhibiting a transient network structure; (iii) anionic wormlike micelles with a micellar branching or interconnected structure; and (iv) cationic wormlike micelles. Similarly, when the middle spacer chain analogue (12-G5G-12) was used, a structural transformation from anionic to cationic wormlike micelles occurs; however, molecular aggregates with a lower positive curvature were also formed in this transition region. When the longest spacer analogue (12-G8G-12) was used, the formation of cation-rich molecular aggregates was not observed. These transition behaviors were attributed to the packing geometry of the gemini surfactants with HTAB. Additionally, as the spacer chain length increased, the zero-shear viscosity in the anionic wormlike micellar region decreased, suggesting limited one-dimensional micellar growth of spherical, rodlike, or anionic wormlike micelles.


Assuntos
Aminoácidos/química , Calcitriol/análogos & derivados , Micelas , Tensoativos/química , Anidridos/química , Bentonita/química , Calcitriol/síntese química , Calcitriol/química , Etilenodiaminas/química , Glutamatos/química , Concentração de Íons de Hidrogênio , Compostos de Amônio Quaternário/química , Soluções , Tensoativos/síntese química , Viscosidade , Água
15.
J Nanosci Nanotechnol ; 14(3): 2238-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745218

RESUMO

In this paper, we report the one-step synthesis of metallic silver nanoparticles (Ag NP) using nonionic surfactant reverse micelle as nanoreactors. Diglycerol monolaurate (C12G2) spontaneously self-assemble into spheroid reverse micelles having size 10-12 nm in cyclohexane under ambient conditions of temperature and pressure. The spheroid C12G2 reverse micelles swell with water. Swollen reverse micelles having size - 20 nm are formed upon incorporation of 1% water. We used C12G2 reverse micelles as nanoreactors for making ordered nanostructure of Ag-NP by replacing water with aqueous silver nitrate solution. The diglycerol moiety of the surfactant reduces silver ions into metallic silver and thereby stabilizes the generated Ag NP. We found that shape and size of the Ag NP is closely related to the structure of nanoreactor. Similar results have been observed in linear chain alkane n-octane. We found bigger Ag NP from the C12G2/octane reverse micelle system as the size of the micelle in this system is bigger than that of the C12G2/cyclohexane system. This simple approach based on in-situ reduction of metal ions (without the need of reducing agent) opens a new possibility for the development of controlled synthesis of nanostructured noble metallic nanoparticles.


Assuntos
Nanopartículas Metálicas/química , Micelas , Cicloexanos/química , Íons/química , Cinética , Luz , Metais/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Pressão , Espalhamento de Radiação , Prata/química , Nitrato de Prata/química , Espectrofotometria Ultravioleta , Temperatura , Raios X
16.
J Oleo Sci ; 62(12): 1073-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24292359

RESUMO

We report shape, size, and internal cross-sectional structure of diglycerol monomyristate (C14G2) reverse micelles in n-hexadecane near the critical point using small-angle X-ray scattering (SAXS). Pair-distance distribution function, p(r), which gives structural information in real-space, was obtained by indirect Fourier transformation (IFT) method. The p(r) showed a clear picture of rodlike micelles at higher temperatures well above the critical point (micellar solution phase separates into two immiscible liquids at ~ 48°C). At a fixed surfactant concentration (5% C14G2), decrease in temperature increases the micellar size monotonously and surprisingly shape of the p(r) curve at 50°C; close to the critical point, mimics the shape of the two dimensional disk-like micelles indicating the onset of critical fluctuations (attractive interactions among rodlike micelles forming a weak network). A similar behavior has been observed with normal micelles in aqueous system near the critical point. When the system is heated to 60°C, shape of the p(r) curve regains rodlike structure. At fixed temperature of 60°C, increase in C14G2 concentration induced one dimensional micellar growth. Maximum length of micelles increases from ca. 23.5 to 46.0 nm upon increasing concentration from 1 to 12% keeping cross section diameter apparently unchanged at ca. 4.0 nm.


Assuntos
Éteres de Glicerila/química , Micelas , Monoglicerídeos/química , Tensoativos/química , Temperatura , Estrutura Molecular , Solventes
17.
J Oleo Sci ; 62(8): 541-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985483

RESUMO

This review briefly summarizes recent developments in fabrication techniques of shape-controlled nanostructures of fullerene crystals across different length scales and the self-assembled mesostructures of functionalized fullerenes both in solutions and solid substrates.


Assuntos
Fulerenos/química , Nanoestruturas/química , Nanotecnologia/métodos , Precipitação Química , Cristalização , Nanotecnologia/tendências , Tamanho da Partícula , Soluções , Propriedades de Superfície
18.
J Nanosci Nanotechnol ; 13(7): 4497-520, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901470

RESUMO

The principles, occurrence, structure and properties of worm-like micellar solutions in nonionic surfactant systems is reviewed, with focus in certain experimental methods used to characterize such soft nanostructured systems. Formulation plays a critical role in the design of worm-like micellar systems and derived viscoelastic networks. Micellar growth in one dimension, and hence formation of worm-like aggregates, is favoured by an increase in the average surfactant molecular packing parameter. Such an increase can be induced by addition of cosurfactant or amphiphilic oil that tends to penetrate in the surfactant palisade layer and reduce the specific surface area. On the other hand, long and bulky oils prone to be solubilized in the micellar core, cause a rod-sphere transition and therefore a decrease in viscosity. Salts have a small effect on the behaviour of nonionic worm-like micelles, contrary to what is found for ionic surfactant systems. The effect of raising temperature on worm-like micellar solutions is the result of a balance between the dehydration of the surfactant head groups, which favors elongation, the kinetics of micellar disruption and the formation of structures with nearly zero curvature. Therefore, a viscosity maximum as a function of temperature is found in many systems. Reverse worm-like micelles with a hydrophilic core can also be formed in organic solvents, even in the absence of ionic components or water. Worm-like micelles are useful as templates for the formation of ordered mesoporous oxides. The interaction of micelles with silica species results in the formation of silica-surfactant complexes that later precipitate as hexagonal phase via a cooperative mechanism.


Assuntos
Cristalização/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tensoativos/química , Íons , Substâncias Macromoleculares/química , Micelas , Conformação Molecular , Tamanho da Partícula , Soluções , Propriedades de Superfície
19.
Langmuir ; 29(19): 5668-76, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23574008

RESUMO

Recently, we have reported a new cinnamic acid-type photocleavable surfactant, C4-C-N-PEG9 that experiences a photocleavage through UV-induced cyclization in aqueous solution, yielding a coumarin derivative (7-butoxy-2H-chromen-2-one) and an aminated polyoxyethylene compound. Here, we have studied the effects of C4-C-N-PEG9 on the photorheological behavior of viscoelastic wormlike micelles formed by aqueous mixture of nonionic surfactants, polyoxyethylene phytosterol ether (PhyEO20) and tetraoxyethylene dodecyl ether (C12EO4). The 4.9 wt % PhyEO20/H2O + 2.4 wt % C12EO4 solution forms wormlike micelles, and its viscosity is ~10 Pa·s. We have found that the addition of C4-C-N-PEG9 into this viscous, non-Newtonian fluid system decreases the viscosity. Viscosity decreased in parallel to the C4-C-N-PEG9 concentration reaching ~0.003 Pa·s at 2.5 wt % of C4-C-N-PEG9. However, viscosity of the C4-C-N-PEG9 incorporated system increased significantly (~200 times at 1.5 wt % of C4-C-N-PEG9 system) upon UV irradiation. Small-Angle X-ray scattering studies have shown that addition of C4-C-N-PEG9 favors wormlike-to-sphere type transition in the micellar structure. However, UV irradiation in the C4-C-N-PEG9 incorporated system causes one-dimensional micellar growth. Since C4-C-N-PEG9 has relatively bigger headgroup size compared to the C12EO4, addition of C4-C-N-PEG9 into wormlike micelles reduces the critical packing parameter resulting in the formation of spherical aggregates. UV irradiation induced one-dimensional micellar growth is caused due to photocleavage of the C4-C-N-PEG9 into a less surface-active coumarin derivative and an aminated polyoxyethylene compound, as confirmed by UV-vis spectrometry and HPLC measurements. The hydrophobic coumarin derivative formed after cleavage of C4-C-N-PEG9 goes to the micellar core and is responsible for decreasing the viscosity. However, the hydrophilic aminated polyoxyethylene prefers to reside at the vicinity of headgroup of PhyEO20 reducing the interhead repulsion, increasing the critical packing parameter and the viscosity as well.


Assuntos
Tensoativos/química , Cinamatos/química , Micelas , Estrutura Molecular , Processos Fotoquímicos , Reologia , Água/química
20.
Langmuir ; 28(51): 17617-22, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23157727

RESUMO

Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.


Assuntos
Aminas/química , Glutamatos/química , Metilaminas/química , Micelas , Conformação Molecular , Fenômenos Químicos , Modelos Moleculares , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA