Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894952

RESUMO

Raman spectroscopy has been used to establish direct evidence of heterometallic metal centers in a metal-organic framework (MOF). The Cu3(BTC)2 MOF (HKUST-1, BTC3-=benzenetricarboxylate) MOF was transmetallated by heating in a solution of RhCl3 to substitute Rh2+ ions for Cu2+ ions. In addition to the Cu-Cu and Rh-Rh stretching modes, Raman spectra of (CuxRh1-x)3(BTC)2 show the Cu-Rh stretching mode, indicating that mixed metal Cu-Rh nodes are formed after transmetallation. DFT studies confirm the assignment of a Raman peak at 285 cm-1 to ν(Cu-Rh). Electron paramagnetic resonance (EPR) spectroscopy experiments further support the conclusion that Rh2+ ions are substituted into the paddle-wheel nodes of the Cu3(BTC)2 to form an isostructural heterometallic MOF, and electron microscopy studies show that Rh and Cu are homogenously distributed in CuRhBTC on the nanoscale.

2.
J Environ Radioact ; 222: 106372, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771856

RESUMO

There are few effective technologies for the sequestration of highly water-soluble pertechnetate (TcO4-) from contaminated water despite the urgency of environmental and public health concerns. In this work, anion exchanged and cetyltrimethylammonium bromide (CTAB) functionalized MIL-101-Cr-NO3 were investigated for perrhenate (ReO4-), a surrogate of TcO4-, sequestration from artificial groundwater. Cl-, I-, and CF3SO3- exchanged MIL-101-Cr proved more effective at ReO4- removal than the parent MIL-101-Cr-F. Compared to the parent framework, CTAB functionalized MIL-101-Cr-NO3 increased ReO4- removal capacity from 39 to 139 mg/g, improved the reaction kinetics from ~30 to <10 min to reach full adsorption capacity and the selectivity for ReO4- over competing NO3-, CO32-, SO42-, and Cl-. Spectroscopic data indicated that the chemical speciation of Re in the exchanged MIL-101-Cr remained ReO4-, indicating synergistic sequestration through both anion exchange and non-ion exchange binding with the positively charged ligand of CTAB. These studies foreshadow potential applications of MOFs for the remediation of 99TcO4- from contaminated environments.


Assuntos
Compostos de Amônio , Água Subterrânea , Estruturas Metalorgânicas , Monitoramento de Radiação , Ânions
3.
Langmuir ; 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32667804

RESUMO

Crystalline films of the Cu3(BTC)2 (BTC3- = 1,3,5-benzenetricarboxylate) metal-organic framework (MOF) have been grown by dip-coating an alumina/Si(111) substrate in solutions of Cu(II) acetate and the organic linker H3BTC. Atomic force microscopy (AFM) experiments demonstrate that the substrate is completely covered by the MOF film, while grazing incidence wide-angle X-ray scattering (GIWAXS) establishes the crystallinity of the films. Forty cycles of dip-coating results in a film that is ∼70 nm thick with a root mean squared roughness of 25 nm and crystallites ranging from 50-160 nm in height. Co2+ ions were exchanged into the MOF framework by immersing the Cu3(BTC)2 films in solutions of CoCl2. By varying the temperature and exchange times, different concentrations of Co were incorporated into the films, as determined by X-ray photoelectron spectroscopy experiments. AFM studies showed that morphologies of the bimetallic films were largely unchanged after transmetalation, and GIWAXS indicated that the bimetallic films retained their crystallinity.

4.
J Am Chem Soc ; 142(10): 4769-4783, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073843

RESUMO

Photophysics tunability through alteration of framework aperture (metal-organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics-aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore's molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore-DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material's photophysical response.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31970859

RESUMO

The effect of donor (D)-acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for "static" changes in materials properties, an external stimulus was applied for "dynamic" control of the electronic profiles. Overall, the presented D-A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.

6.
Inorg Chem ; 59(1): 179-183, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31260280

RESUMO

For the first time, we report the ability to control radionuclide species release kinetics in metal-organic frameworks (MOFs) as a function of postsynthetic capping linker installation, which is essential for understanding MOF potential as viable radionuclide wasteform materials or versatile platforms for sensing, leaching, and radionuclide sequestration. The radiation damage of prepared frameworks under γ radiation has also been studied. We envision that the presented studies are the first steps toward utilization of the reported scaffolds for more efficient nuclear waste administration.

7.
Chem Rev ; 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31638383

RESUMO

In this Review, we showcase the upsurge in the development and fundamental photophysical studies of more than 100 metal-organic frameworks (MOFs) as versatile stimuli-responsive platforms. The goal is to provide a comprehensive analysis of the field of photoresponsive MOFs while delving into the underlying photophysical properties of various classes of photochromic molecules including diarylethene, azobenzene, and spiropyran as well as naphthalenediimide and viologen derivatives integrated inside a MOF matrix as part of a framework backbone, as a ligand side group, or as a guest. In particular, the geometrical constraints, photoisomerization rates, and electronic structures of photochromic molecules integrated inside a rigid MOF scaffold are discussed. Thus, this Review reflects on the challenges and opportunities of using photoswitchable MOFs in next-generation multifunctional stimuli-responsive materials while highlighting their use in optoelectronics, erasable inks, or as the next generation of sensing devices.

8.
Angew Chem Int Ed Engl ; 58(46): 16533-16537, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31529667

RESUMO

We report the first study of a gas-phase reaction catalyzed by highly dispersed sites at the metal nodes of a crystalline metal-organic framework (MOF). Specifically, CuRhBTC (BTC3- =benzenetricarboxylate) exhibited hydrogenation activity, while other isostructural monometallic and bimetallic MOFs did not. Our multi-technique characterization identifies the oxidation state of Rh in CuRhBTC as +2, which is a Rh oxidation state that has not previously been observed for crystalline MOF metal nodes. These Rh2+ sites are active for the catalytic hydrogenation of propylene to propane at room temperature, and the MOF structure stabilizes the Rh2+ oxidation state under reaction conditions. Density functional theory calculations suggest a mechanism in which hydrogen dissociation and propylene adsorption occur at the Rh2+ sites. The ability to tailor the geometry and ensemble size of the metal nodes in MOFs allows for unprecedented control of the active sites and could lead to significant advances in rational catalyst design.

9.
J Am Chem Soc ; 141(29): 11628-11640, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31276404

RESUMO

Thermodynamic studies of actinide-containing metal-organic frameworks (An-MOFs), reported herein for the first time, are a step toward addressing challenges related to effective nuclear waste administration. In addition to An-MOF thermochemistry, enthalpies of formation were determined for the organic linkers, 2,2'-dimethylbiphenyl-4,4'-dicarboxylic acid (H2Me2BPDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC), which are commonly used building blocks for MOF preparation. The electronic structure of the first example of An-MOF with mixed-metal AnAn'-nodes was influenced through coordination of transition metals as shown by the density of states near the Fermi edge, changes in the Tauc plot, conductivity measurements, and theoretical calculations. The "structural memory" effect (i.e., solvent-directed crystalline-amorphous-crystalline structural dynamism) was demonstrated as a function of node coordination degree, which is the number of organic linkers per metal node. Remarkable three-month water stability was reported for Th-containing frameworks herein, and the mechanism is also considered for improvement of the behavior of a U-based framework in water. Mechanistic aspects of capping linker installation were highlighted through crystallographic characterization of the intermediate, and theoretical calculations of free energies of formation (ΔGf) for U- and Th-MOFs with 10- and 12-coordinated secondary building units (SBUs) were performed to elucidate experimentally observed transformations during the installation processes. Overall, these results are the first thermochemical, electronic, and mechanistic insights for a relatively young class of actinide-containing frameworks.

10.
J Am Chem Soc ; 141(13): 5350-5358, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840822

RESUMO

Electronic structure modulation of metal-organic frameworks (MOFs) through the connection of linker "wires" as a function of an external stimulus is reported for the first time. The established correlation between MOF electronic properties and photoisomerization kinetics as well as changes in an absorption profile is unprecedented for extended well-defined structures containing coordinatively integrated photoresponsive linkers. The presented studies were carried out on both single crystal and bulk powder with preservation of framework integrity. An LED-containing electric circuit, in which the switching behavior was driven by the changes in MOF electronic profile, was built for visualization of experimental findings. The demonstrated concept could be used as a blueprint for development of stimuli-responsive materials with dynamically controlled electronic behavior.

11.
ACS Appl Mater Interfaces ; 10(30): 25754-25762, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028121

RESUMO

Organic chromophores that exhibit aggregation-induced emission (AIE) are of interest for applications in displays, lighting, and sensing, because they can maintain efficient emission at high molecular concentrations in the solid state. Such advantages over conventional chromophores could allow thinner conversion layers of AIE chromophores to be realized, with benefits in terms of the efficiency of the optical outcoupling, thermal management, and response times. However, it is difficult to create large-area optical quality thin films of efficiently performing AIE chromophores. Here, we demonstrate that this can be achieved by using a surface-anchored metal-organic framework (SURMOF) thin film coating as a host substrate, into which the tetraphenylethylene (TPE)-based AIE chromophore can be printed. We demonstrate that the SURMOF constrains the AIE-chromophore molecular conformation, affording efficient performance even at low loading densities in the SURMOF. As the loading density of the AIE chromophore in the SURMOF is increased, its absorption and emission spectra are tuned due to increased interaction between AIE molecules, but the high photoluminescent quantum yield (PLQY = 50% for this AIE chromophore) is maintained. Lastly, we demonstrate that patterns of the AIE chromophore with 70 µm feature sizes can be easily created by inkjet printing onto the SURMOF substrate. These results foreshadow novel possibilities for the creation of patterned phosphor thin films utilizing AIE chromophores for display or lighting applications.

12.
Angew Chem Int Ed Engl ; 57(35): 11310-11315, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974583

RESUMO

We report the first examples of purely organic donor-acceptor materials with integrated π-bowls (πBs) that combine not only crystallinity and high surface areas but also exhibit tunable electronic properties, resulting in a four-orders-of-magnitude conductivity enhancement in comparison with the parent framework. In addition to the first report of alkyne-azide cycloaddition utilized for corannulene immobilization in the solid state, we also probed the charge transfer rate within the Marcus theory as a function of mutual πB orientation for the first time, as well as shed light on the density of states near the Fermi edge. These studies could foreshadow new avenues for πB utilization for the development of optoelectronic devices or a route for highly efficient porous electrodes.

13.
J Am Chem Soc ; 140(24): 7611-7622, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29807417

RESUMO

Stimuli-responsive materials are vital for addressing emerging demands in the advanced technology sector as well as current industrial challenges. Here, we report for the first time that coordinative integration of photoresponsive building blocks possessing photochromic spiropyran and diarylethene moieties within a rigid scaffold of metal-organic frameworks (MOFs) could control photophysics, in particular, cycloreversion kinetics, with a level of control that is not accessible in the solid state or solution. On the series of photoactive materials, we demonstrated for the first time that photoisomerization rates of photochromic compounds could be tuned within almost 2 orders of magnitude. Moreover, cycloreversion rates of photoresponsive derivatives could be modulated as a function of the framework structure. Furthermore, through MOF engineering we were able to achieve complete isomerization for coordinatively immobilized spiropyran derivatives, typically exhibiting limited photoswitching behavior in the solid state. For instance, spectroscopic analysis revealed that the novel monosubstituted spiropyran derivative grafted to the backbone of the MOF pillar exhibits a remarkable photoisomerization rate of 0.16 s-1, typical for cycloreversion in solution. We also applied the acquired fundamental principles toward mapping of changes in material properties, which could provide a pathway for monitoring material aging or structural deterioration.

14.
Chem Soc Rev ; 47(13): 4710-4728, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29546889

RESUMO

In this review, we highlight how recent advances achieved in the fields of photochemistry and photophysics of metal-organic frameworks (MOFs) could be applied towards the engineering of next generation MOF-based sensing devices. In addition to high surface area and structural tunability, which are crucial for efficient sensor development, progress in the field of MOF-based sensors could rely on the combination of MOF light-harvesting ability, understanding energy transfer processes within a framework, and application of MOF-based photocatalysis towards sensing enhancement. All photophysical concepts could be integrated within one material to improve efficiency and selectivity of sensing devices. Thus, the focus of this review is shifted towards a "beyond the pores" approach, which could foreshadow new guidelines for sensor engineering.

15.
Chem Commun (Camb) ; 54(50): 6472-6483, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29445780

RESUMO

In this review, we highlight how recent advances in the field of actinide structural chemistry of metal-organic frameworks (MOFs) could be utilized towards investigations relative to efficient nuclear waste administration, driven by the interest towards development of novel actinide-containing architectures as well as concerns regarding environmental pollution and nuclear waste storage. We attempt to perform a comprehensive analysis of more than 100 crystal structures of the existing An (U,Th)-based MOFs to establish a correlation between structural density and wt% of actinide and bridge structural motifs common for natural minerals with ones typically observed in the solution chemistry of actinides. In addition to structural considerations, we showcase the benefits of MOF modularity and porosity towards the stepwise building of hierarchical material complexity and the capture of nuclear fission products, such as technetium and iodine. We expect that these facets not only contribute to the fundamental science of actinide chemistry, but also could foreshadow pathways for more efficient nuclear waste management.

16.
J Am Chem Soc ; 139(46): 16852-16861, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069547

RESUMO

Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

17.
Chem Commun (Camb) ; 53(53): 7361-7364, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28580471

RESUMO

Photophysics and dynamics of chromophores with a benzylidene imidazolinone core, responsible for emission of green fluorescent protein variants, were studied as a function of host topology by three approaches. Coordinative, non-coordinative, and "fastened" immobilization were utilized to study chromophore emission. Variable-temperature quadrupolar spin-echo 2H NMR spectra are reported.

18.
Angew Chem Int Ed Engl ; 56(16): 4525-4529, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28332256

RESUMO

We report the first example of a donor-acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donor-acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of π-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.

19.
J Am Chem Soc ; 139(14): 5201-5209, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28316244

RESUMO

The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to "smart" membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, Mx-yM'y-MOFs, MxM'y-MOFs, and Mx(ligand-M'y)-MOFs, in which the second metal (M') incorporation occurs through (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. These studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.

20.
Inorg Chem ; 55(15): 7257-64, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27304253

RESUMO

Engineering of novel systems capable of efficient energy capture and transfer in a predesigned pathway could potentially boost applications varying from organic photovoltaics to catalytic platforms and have implications for energy sustainability and green chemistry. While light-harvesting properties of different materials have been studied for decades, recently, there has been great progress in the understanding and modeling of short- and long-range energy transfer processes through utilization of metal-organic frameworks (MOFs). In this Forum Article, the recent advances in efficient multiple-chromophore coupling in well-defined metal-organic materials through mimicking a protein system possessing near 100% energy transfer are discussed. Utilization of a MOF as an efficient replica of a protein ß-barrel to maintain chromophore emission was also demonstrated. Furthermore, we established a novel dependence of a photophysical response on an electronic configuration for chromophores with the benzylidene imidazolinone core. For that, we prepared 16 chromophores, in which the benzylidene imidazolinone core was modified with electron-donating and electron-withdrawing substituents. To establish the structure-dependent photophysical properties of the prepared chromophores, 11 novel molecular structures were determined by single-crystal X-ray diffraction. These findings allow one to predict the chromophore emission profile inside a rigid framework as a function of the substituent, a key parameter for achieving the spectral overlap necessary to study and increase resonance energy transfer efficiency in MOF-based materials.


Assuntos
Estruturas Metalorgânicas/química , Compostos de Benzil/química , Cristalografia por Raios X , Grupo dos Citocromos b/química , Transferência de Energia , Proteínas de Escherichia coli/química , Proteínas de Fluorescência Verde/química , Imidazolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA