Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(27): e202202089, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35460153

RESUMO

Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

2.
Angew Chem Int Ed Engl ; 61(6): e202115854, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877789

RESUMO

Under topological guidance, the self-assembly process based on a tetratopic porphyrin synthon results in a hydrogen-bonded organic framework (HOF) with the predicted square layers topology (sql) but unsatisfied stability. Strikingly, simply introducing a transition metal in the porphyrin center does not change the network topology but drastically causes noticeable change on noncovalent interaction, orbital overlap, and molecular geometry, therefore ultimately giving rise to a series of metalloporphyrinic HOFs with high surface area, and excellent stability (intact after being soaked in boiling water, concentrated HCl, and heated to 270 °C). On integrating both photosensitizers and catalytic sites into robust backbones, this series of HOFs can effectively catalyze the photoreduction of CO2 to CO, and their catalytic performances greatly depend on the chelated metal species in the porphyrin centers. This work enriches the library of stable functional HOFs and expands their applications in photocatalytic CO2 reduction.

3.
Angew Chem Int Ed Engl ; 60(48): 25485-25492, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34533874

RESUMO

Herein, an effective tandem catalysis strategy is developed to improve the selectivity of the CO2 RR towards C2 H4 by multiple distinct catalytic sites in local vicinity. An earth-abundant elements-based tandem electrocatalyst PTF(Ni)/Cu is constructed by uniformly dispersing Cu nanoparticles (NPs) on the porphyrinic triazine framework anchored with atomically isolated nickel-nitrogen sites (PTF(Ni)) for the enhanced CO2 RR to produce C2 H4 . The Faradaic efficiency of C2 H4 reaches 57.3 % at -1.1 V versus the reversible hydrogen electrode (RHE), which is about 6 times higher than the non-tandem catalyst PTF/Cu, which produces CH4 as the major carbon product. The operando infrared spectroscopy and theoretic density functional theory (DFT) calculations reveal that the local high concentration of CO generated by PTF(Ni) sites can facilitate the C-C coupling to form C2 H4 on the nearby Cu NP sites. The work offers an effective avenue to design electrocatalysts for the highly selective CO2 RR to produce multicarbon products via a tandem route.

4.
Angew Chem Int Ed Engl ; 60(38): 20915-20920, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278674

RESUMO

The unique applications of porous metal-organic framework (MOF) liquids with permanent porosity and fluidity have attracted significant attention. However, fabrication of porous MOF liquids remains challenging because of the easy intermolecular self-filling of the cavity or the rapid settlement of porous hosts in hindered solvents that cannot enter their pores. Herein, we report a facile strategy for the fabrication of a MOF liquid (Im-UiO-PL) by surface ionization of an imidazolium-functionalized framework with a sterically hindered poly(ethylene glycol) sulfonate (PEGS) canopy. The Im-UiO-PL obtained in this way has a CO2 adsorption approximately 14 times larger than that of pure PEGS. Distinct from a porous MOF solid counterpart, the stored CO2 in Im-UiO-PL can be slowly released and efficiently utilized to synthesize cyclic carbonates in the atmosphere. This is the first example of the use of a porous MOF liquid as a CO2 storage material for catalysis. It offers a new method for the fabrication of unique porous liquid MOFs with functional behaviors in various fields of gas adsorption and catalysis.

5.
Angew Chem Int Ed Engl ; 60(31): 17108-17114, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34033203

RESUMO

The electrocatalytic conversion of CO2 into value-added chemicals is a promising approach to realize a carbon-energy balance. However, low current density still limits the application of the CO2 electroreduction reaction (CO2 RR). Metal-organic frameworks (MOFs) are one class of promising alternatives for the CO2 RR due to their periodically arranged isolated metal active sites. However, the poor conductivity of traditional MOFs usually results in a low current density in CO2 RR. We have prepared conductive two-dimensional (2D) phthalocyanine-based MOF (NiPc-NiO4 ) nanosheets linked by nickel-catecholate, which can be employed as highly efficient electrocatalysts for the CO2 RR to CO. The obtained NiPc-NiO4 has a good conductivity and exhibited a very high selectivity of 98.4 % toward CO production and a large CO partial current density of 34.5 mA cm-2 , outperforming the reported MOF catalysts. This work highlights the potential of conductive crystalline frameworks in electrocatalysis.

6.
Small ; 16(52): e2005254, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33258281

RESUMO

The electroreduction of CO2 to value-added chemicals such as CO is a promising approach to realize carbon-neutral energy cycle, but still remains big challenge including low current density. Covalent organic frameworks (COFs) with abundant accessible active single-sites can offer a bridge between homogeneous and heterogeneous electrocatalysis, but the low electrical conductivity limits their application for CO2 electroreduction reaction (CO2 RR). Here, a 2D conductive Ni-phthalocyanine-based COF, named NiPc-COF, is synthesized by condensation of 2,3,9,10,16,17,23,24-octa-aminophthalocyaninato Ni(II) and tert-butylpyrene-tetraone for highly efficient CO2 RR. Due to its highly intrinsic conductivity and accessible active sites, the robust conductive 2D NiPc-COF nanosheets exhibit very high CO selectivity (>93%) in a wide range of the applied potentials of -0.6 to -1.1 V versus the reversible hydrogen electrode (RHE) and large partial current density of 35 mA cm-2 at -1.1 V versus RHE in aqueous solution that surpasses all the conventional COF electrocatalysts. The robust NiPc-COF that is bridged by covalent pyrazine linkage can maintain its CO2 RR activity for 10 h. This work presents the implementation of the conductive COF nanosheets for CO2 RR and provides a strategy to enhance energy conversion efficiency in electrocatalysis.

7.
RSC Adv ; 8(13): 7040-7043, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540358

RESUMO

Novel coaxial heterojunction carbon nanofibers, fabricated by electro-spinning a mixture of hydro-pitch and polyacrylonitrile, served as the counter electrode for dye-sensitized solar cells. Their high power conversion efficiency, being comparable to that of Pt CE, was achieved due to their good conductivity and high heteroatom content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...