Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(1): 172-178, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825623

RESUMO

Rechargeable Li-air (O2) batteries have attracted a great deal of attention because of their high theoretical energy density and been regarded as a promising next-generation energy storage technology. Among numerous obstacles to Li-air (O2) batteries preventing their use in practical applications, water is a representative impurity for Li-air (O2), which could hasten the deterioration of the anode and accelarate the premature death of cells. Here, we report an effective in situ high-current pretreatment process to enhance the cycling performance of Li-O2 batteries in a wet tetraethylene glycol dimethyl ether-based electrolyte. With the help of certain levels of H2O (from 100 to 2000 ppm) in the electrolyte, adequate Li2O formed on the lithium anode surface after high-current pretreatment, which is necessary for a robust and uniform solid electrolyte interphase layer to protect Li metal during the long-term discharge-charge cycling process. This in situ high-current pretreatment method in a wet electrolyte is shown to be an effective approach for enhancing the cycling performance of Li-O2 batteries with a stable Li metal anode and promoting the realization of practical Li-air batteries.

2.
ACS Appl Mater Interfaces ; 11(47): 44413-44420, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31691552

RESUMO

Two-dimensional materials have been extensively investigated in the fields of electrochemical sensors, field-effect transistors, and other electronic devices due to their large surface areas, high compatibility with device integration, and so on. Conventional electrodes, such as precious metal layers that are deposited on polymer or silicon wafers, have gradually revealed increasing difficulties in adapting to various device structures, especially for two-dimensional materials, which prefer high exposure of surface atoms. Here, we demonstrate a tailorable metal-ceramic (Cu-TiC0.5) layered structure as novel electrodes with high mechanical property and conductivity and fabricate a highly sensitive gas sensor with graphene lying on this proposed electrodes. The Cu-TiC0.5 layered structure exhibits remarkably high tensile yield strength and compressive yield strength, which increase 7 and 8 times than those of the pure copper, respectively. Meanwhile, excellent flexibility and conductivity could also be obtained with the further thinning of the Cu-TiC0.5 layered composite, which shows its potential applications in flexible electronics. Finally, we demonstrated that a graphene-based gas sensor fabricated on tailored metal-ceramic electrodes was ultrasensitive and robust, which benefits from the good thermal conductivity and peculiar gas channels etched on the surface of copper alloy electrodes.

3.
ACS Appl Mater Interfaces ; 11(34): 30793-30800, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31385688

RESUMO

Rechargeable lithium-oxygen (Li-O2) batteries (LOBs) with extremely high theoretical energy density have been regarded as a promising next-generation energy storage technology. However, the limited cycle life, undesirable corrosion, and safety hazards are seriously limiting the practical application of the lithium metal anode in LOBs. Here, we demonstrate a rational design of the Li-Al alloy (LiAlx) anode that successfully achieves ultralong cycling life of LOBs with stable Li cycling. Through in situ high-current pretreatment technology, Al atoms accumulates, and a stable Al2O3-containing solid electrolyte interphase protective film formed on the LiAlx anode surface to suppress side reactions and O2 crossover. The cycling life of LOB with the protected LiAlx anode increases to 667 cycles under a fixed capacity of 1000 mA h g-1, as compared to 17 cycles without pretreatment. We believe that this in situ high-current pretreatment strategy presents a new vision to protect the lithium-containing alloy anodes, such as Li-Al, Li-Mg, Li-Sn, and Li-In alloys for stable and safe lithium metal batteries (Li-O2 and Li-S batteries).

4.
J Hazard Mater ; 373: 705-715, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959284

RESUMO

High efficient adsorption of radioiodine in nuclear waste has attracted extensive attentions all over the world. In this work, we fabricated sulfur and nitrogen co-doped graphene aerogels (SN-GA) through one-step hydrothermal method, and investigated its iodine adsorption behavior including adsorption kinetics and isotherms in water. Our results reveal that SN-GA exhibits a 3D porous architecture with thiophene-S, oxidized-S, pyridine-N, pyrrole-N and graphite-N co-doped into the sp2 carbon frameworks. The adsorption experiment showed SN-GA has a maximum iodine adsorption capacity of 999 mg g-1 determined by Langmuir isotherm, and the adsorption process could be better described by the pseudo-second-order model.

5.
ChemSusChem ; 12(12): 2689-2700, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30997950

RESUMO

Potassium- (PIBs) and sodium-ion batteries (SIBs) are emerging as promising alternatives to lithium-ion batteries owing to the low cost and abundance of K and Na resources. However, the large radius of K+ and Na+ lead to sluggish kinetics and relatively large volume variations. Herein, a surface-confined strategy is developed to restrain SnS2 in self-generated hierarchically porous carbon networks with an in situ reduced graphene oxide (rGO) shell (SnS2 @C@rGO). The as-prepared SnS2 @C@rGO electrode delivers high reversible capacity (721.9 mAh g-1 at 0.05 A g-1 ) and superior rate capability (397.4 mAh g-1 at 2.0 A g-1 ) as the anode material of SIB. Furthermore, a reversible capacity of 499.4 mAh g-1 (0.05 A g-1 ) and a cycling stability with 298.1 mAh g-1 after 500 cycles at a current density of 0.5 A g-1 were achieved in PIBs, surpassing most of the reported non-carbonaceous anode materials. Additionally, the electrochemical reactions between SnS2 and K+ were investigated and elucidated.

6.
Chemosphere ; 210: 120-128, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29986217

RESUMO

3D porous sulfur and nitrogen co-doped graphene aerogel has been fabricated by a facile one-pot process. Both experimental and theoretical studies have demonstrated that sulfur and nitrogen co-doping could synergistically enhance the catalytic performance for activating peroxydisulfate (PDS) compared to the original and N doped graphene aerogels. The ratio of sulfur/nitrogen in the aerogel can be controlled by regulating the additions of thiourea and urea sources, and the aerogel with the S/N ratio of about 1:2.5 shows a better catalytic effect due to more significant changes in the electrostatic potential and the surface charge distribution, as revealed by the theoretical simulations. The radical quenching tests indicated that both SO4·- and ·OH radicals could be formed in the SN-rGO aerogel + PDS system and contribute most to RhB degradation.


Assuntos
Corantes/química , Grafite/química , Poluentes Químicos da Água/química , Catálise , Cor , Nitrogênio/química , Enxofre/química
7.
ACS Appl Mater Interfaces ; 10(22): 18610-18618, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758163

RESUMO

The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li3N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm-2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g-1 and a retention of 96% after 200 cycles.

8.
Macromol Rapid Commun ; 39(12): e1800125, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29709102

RESUMO

Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m2 g-1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications.


Assuntos
Aminofenóis/química , Formaldeído/química , Nanotubos de Carbono/química , Polietilenoglicóis/química , Polímeros/química , Poliestirenos/química , Micelas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Polímeros/síntese química , Porosidade , Dióxido de Silício/química
9.
Nanoscale ; 10(16): 7851-7859, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29664492

RESUMO

Three-dimensional (3D) carbon-wrapped iron sulfide interlocked graphene (Fe7S8@C-G) composites for high-performance sodium-ion storage are designed and produced through electrostatic interactions and subsequent sulfurization. The iron-based metal-organic frameworks (MOFs, MIL-88-Fe) interact with graphene oxide sheets to form 3D networks, and carbon-wrapped iron sulfide (Fe7S8@C) nanoparticles with high individual-particle conductivity are prepared following a sulfurization process, surrounded by interlocked graphene sheets to enhance the interparticle conductivity. The prepared Fe7S8@C-G composites exhibit not only improved individual-particle and interparticle conductivity to shorten electron/ion diffusion pathways, but also enhanced structural stability to prevent the aggregation of active materials and buffer large volume changes during sodiation/desodiation. As a sodium-ion storage material, the Fe7S8@C-G composites exhibit a reversible capacity of 449 mA h g-1 at 500 mA g-1 after 150 cycles and a retention capacity of 306 mA h g-1 under a current density of 2000 mA g-1. The crucial factors related to the structural changes and stability during cycles have been further investigated. These results demonstrate that the high-performance sodium-ion storage properties are mainly attributed to the uniquely designed three-dimensional configuration.

10.
Chemosphere ; 191: 389-399, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29054079

RESUMO

3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m2/g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min-1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO4·-) by transferring electrons to N-rGO.


Assuntos
Grafite/química , Fenol/química , Adsorção , Carbono/química , Catálise , Géis , Cinética , Oxirredução , Óxidos , Água
11.
Sci Rep ; 7(1): 9642, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851964

RESUMO

In an animal body, coronary arteries cover around the whole heart and supply the necessary oxygen and nutrition so that the heart muscle can survive as well as can pump blood in and out very efficiently. Inspired by this, we have designed a novel heart-coronary arteries structured electrode by electrospinning carbon nanofibers to cover active anode graphene/silicon particles. Electrospun high conductive nanofibers serve as veins and arteries to enhance the electron transportation and improve the electrochemical properties of the active "heart" particles. This flexible binder free carbon nanofibers/graphene/silicon electrode consists of millions of heart-coronary arteries cells. Besides, in the graphene/silicon "hearts", graphene network improves the electrical conductivity of silicon nanopaticles, buffers the volume change of silicon, and prevents them from directly contacting with electrolyte. As expected, this novel composite electrode demonstrates excellent lithium storage performance with a 86.5% capacity retention after 200 cycles, along with a high rate performance with a 543 mAh g-1 capacity at the rate of 1000 mA g-1.

12.
Gene ; 619: 10-20, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359916

RESUMO

Accumulating evidence indicates that human circulating microRNAs (miRNAs) could serve as diagnostic and prognostic biomarkers in various cancers. We aimed to explore novel miRNA biomarkers in the blood of breast cancer patients based on miRNA profiling. A miRCURY™ LNA Array was used to identify differentially altered miRNAs in the whole blood of breast cancer patients (n=6) and healthy controls (n=6). Levels of candidate miRNAs were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in whole blood specimens of 15 breast cancer patients and 13 age-matched healthy control individuals. The miRWalk database was used to predict miRNA targets and the DAVID tool was used to identify significant enrichment pathways. A total of 171 differentially expressed miRNAs were identified by microarray, including 169 upregulated and 2 downregulated miRNAs in breast cancer. Five upregulated miRNAs (miR-30b-5p, miR-96-5p, miR-182-5p, miR-374b-5p, and miR-942-5p) were confirmed by qRT-PCR. The areas under the receiver operating characteristic curve of miR-30b-5p, miR-96-5p, miR-182-5p, miR-374b-5p, and miR-942-5p were 0.9333, 0.7692, 0.7590, 0.8256, and 0.8128, respectively. Importantly, upregulation of these five miRNAs was observed even in patients with very early-stage breast cancer. A total of 855 genes were predicted to be targeted by the five miRNAs, and the one cut domain family member 2 gene (ONECUT2) was a shared target of the five miRNAs. Analysis of publicly available data revealed that these dysregulated miRNAs and the target genes were associated with the survival of breast cancer patients. Furthermore, the five miRNAs were significantly enriched in numerous cancer-related pathways, including "MicroRNAs in cancer", "Pathways in cancer", "FoxO signaling pathway", "Ras signaling pathway", "Rap1 signaling pathway", "MAPK signaling pathway", and "PI3K-Akt signaling pathway". Our data support the potential of the five identified miRNAs as novel biomarkers for the detection of breast cancer, and indicate that they may be involved in breast cancer development and progression.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , MicroRNAs/genética , Adulto , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , MicroRNAs/sangue , Pessoa de Meia-Idade , Análise de Sobrevida , Transcriptoma
13.
Bioelectrochemistry ; 109: 117-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26781363

RESUMO

Nanoporous gold (NPG) obtained via dealloying of Au alloys has potential applications in a range of fields, and in particular in bioelectrochemistry. NPG possesses a three dimensional bicontinuous network of interconnected pores with typical pore diameters of ca. 30-40 nm, features that are useful for the immobilisation of enzymes. This review describes the common routes of fabrication and characterization of NPG, the use of NPG as a support for oxidoreductases for applications in biosensors and biofuel cells together with recent progress in the use of NPG electrodes for applications in bioelectrochemistry.


Assuntos
Ouro/química , Nanoporos/ultraestrutura , Nanotecnologia/métodos , Ligas/química , Animais , Biocombustíveis/microbiologia , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Transporte de Elétrons , Enzimas Imobilizadas/química , Fungos/enzimologia , Humanos , Oxirredutases/química
14.
Talanta ; 125: 366-71, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840458

RESUMO

A kind of dealloyed nanoporous gold (NPG)/ultrathin CuO film nanohybrid for non-enzymatic glucose sensing has been prepared by a simple, in-situ, time-saving and controllable two-step electrodeposition. The three-dimensional and bicontinuous nanoporous structure of the nanocomposites have been characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM), and the electrochemical tests have been estimated by cyclic voltammetry and single potential step chronoamperometry (SPSC). The optimal NPG/CuO electrode exhibits great electrocatalytic activity towards glucose oxidation and also shows obvious linear response to glucose up to 12 mM with a high sensitivity of 374.0 µA cm(-2)mM(-1) and a good detection limit of 2.8 µM (S/N=3), as well as strong tolerance against chloride poisoning and interference of ascorbic acid and uric acid.


Assuntos
Técnicas Biossensoriais , Cobre/química , Glucose/análise , Glucose/química , Ouro/química , Nanoestruturas/química , Ácido Ascórbico/química , Técnicas Eletroquímicas , Eletroquímica , Galvanoplastia , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos , Nanotecnologia , Nanotubos de Carbono/química , Porosidade , Ácido Úrico/química
15.
Analyst ; 139(2): 488-94, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256634

RESUMO

Nanoporous gold (NPG) based biosensors have been constructed by covalently immobilizing glucose oxidase (GOx) onto self-assembled monolayers (SAMs). With p-benzoquinone (BQ) as a mediator, diffusion behavior and amperometric biosensor performance are evaluated by electrochemical characterization. The enzyme modified electrodes are demonstrated to show a thickness-sensitive behavior. Compared with planar polycrystalline gold, the unique porous structure of NPG has also been characterized via an electrochemical surface reconstruction process. Single-crystal gold-like electrochemical behavior on NPG and a comprehensive understanding of its impacts on sensor performance have been proposed.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Ouro/química , Nanoporos , Aspergillus niger/enzimologia , Benzoquinonas/química , Técnicas Biossensoriais/instrumentação , Difusão , Eletroquímica , Eletrodos , Glucose Oxidase/metabolismo , Humanos
16.
Talanta ; 116: 1054-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148515

RESUMO

We report a simple, one-step synthesis of hybrid film by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) on nanoporous gold (NPG) for applications in amperometric glucose biosensors. The enzyme, glucose oxidase (GOx), is entrapped into poly(3,4-ethylenedioxythiophene) (PEDOT) matrix, simultaneously. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) studies show the NPG preserve its original bicontinuous nanoporous structure and the PEDOT film grows uniformly with a thickness of ~10 nm. The modified electrodes have been investigated by cyclic voltammetry (CV) and single potential step chronoamperometry (SPSC). The influence of PEDOT film's thickness has been explored to optimize sensor behaviors. Mediated by p-benzoquinone (BQ), the calibration curves have been obtained by applying relatively low constant potential of 200 mV (vs. SCE). The NPG/PEDOT/GOx (2CVs) biosensor exhibits high sensitivity of 7.3 µA mM(-1) cm(-2) and a wide linear range of 0.1-15 mM, making it suitable for reliable analytic applications.


Assuntos
Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Glucose/análise , Ouro/química , Polímeros/química , Benzoquinonas/química , Calibragem , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Glucose Oxidase/química , Porosidade , Sensibilidade e Especificidade , Soluções
17.
Anal Chem ; 85(21): 10495-502, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24080025

RESUMO

The ion-to-electron transduction reaction mechanism at the buried interface of the electrosynthesized poly(3-octylthiophene) (POT) solid-contact (SC) ion-selective electrode (ISE) polymeric membrane has been studied using synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), and electrochemical impedance spectroscopy (EIS)/neutron reflectometry (NR). The tetrakis[3,5-bis(triflouromethyl)phenyl]borate (TFPB(-)) membrane dopant in the polymer ISE was transferred from the polymeric membrane to the outer surface layer of the SC on oxidation of POT but did not migrate further into the oxidized POT SC. The TFPB(-) and oxidized POT species could only be detected at the outer surface layer (≤14 Ǻ) of the SC material, even after oxidation of the electropolymerized POT SC for an hour at high anodic potential demonstrating that the ion-to-electron transduction reaction is a surface confined process. Accordingly, this study provides the first direct structural evidence of ion-to-electron transduction in the electropolymerized POT SC ISE by proving TFPB(-) transport from the polymeric ISE membrane to the oxidized POT SC at the buried interface of the SC ISE. It is inferred that the performance of the POT SC ISE is independent of the thickness of the POT SC but is instead contingent on the POT SC surface reactivity and/or electrical capacitance of the POT SC. In particular, the results suggest that the electropolymerized POT conducting polymer may spontaneously form a mixed surface/bulk oxidation state, which may explain the unusually high potential stability of the resulting ISE. It is anticipated that this new understanding of ion-to-electron transduction with electropolymerized POT SC ISEs will enable the development of new and improved devices with enhanced analytical performance attributes.


Assuntos
Elétrons , Eletrodos Íon-Seletivos , Polímeros/química , Tiofenos/química , Propriedades de Superfície
18.
Nanoscale Res Lett ; 8(1): 179, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23594724

RESUMO

Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.

19.
Chem Commun (Camb) ; (35): 5260-2, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19707639

RESUMO

We report here on the selective voltammetric cation transfer into a polymeric thin layer film that is back side contacted with an anion-exchanging conducting polymer, poly(3-octylthiophene).


Assuntos
Ânions/química , Cátions/química , Polímeros/química , Tiofenos/química , Eletroquímica , Oxirredução
20.
Anal Chim Acta ; 597(2): 223-30, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17683733

RESUMO

By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.


Assuntos
Gases/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Polímeros/química , Quartzo/química , Calibragem , Cristalização , Condutividade Elétrica , Eletroquímica , Etanol/química , Estrutura Molecular , Reprodutibilidade dos Testes , Tolueno/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA