Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 690
Filtrar
1.
Life Sci ; 285: 120013, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34614418

RESUMO

AIMS: Due to poor targeting ability of anti-tumor drugs and self-adaptation of tumors, the chemotherapy of ovarian cancer is still poorly effective. In recent years, the treatment of tumor with nano-targeted agents has become a potential research focus. In this study, a new type of short cell-penetrating peptide RPV-modified paclitaxel plus schisandrin B liposomes were constructed to disrupt VM channels, angiogenesis, proliferation and migration for the treatment of ovarian cancer. MATERIALS AND METHODS: In this study, clone assay, TUNEL, Transwell, wound-healing, CAM and mimics assay were used to detect the effects of RPV-modified liposomes on ovarian cancer SK-OV-3 cells before and after treatment. HE-staining, immunofluorescence and ELISA were used to further detect the expression of tumor-related proteins. KEY FINDINGS: RPV-modified paclitaxel plus schisandrin B liposomes can inhibit angiogenesis, VM channel formation, invasion and proliferation of ovarian SK-OV-3 cells. In vitro and in vivo studies showed that tumor-related protein expression was down-regulated. Modification of RPV can prolong the retention time of liposome in vivo and accumulate in the tumor site, increasing the anti-tumor efficacy. SIGNIFICANCE: The RPV-modified paclitaxel plus schisandrin B liposomes have good anti-tumor effect, thus may provide a new avenue for the treatment of ovarian cancer.

2.
Curr Neurovasc Res ; 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636310

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a contributing factor for neurodegenerative diseases. As a recently identified heptapeptide of the brain renin-angiotensin system, angiotensin-(1-7) was revealed to activate its receptor MAS1 and thus ameliorated cognitive impairments in rats with CCH. Since hippocampal synaptic degeneration represents an important pathological basis of cognitive deficits, we hypothesize that activation of MAS1-mediated signaling may alleviate CCH-induced synaptic degeneration in the hippocampus. METHODS: In this study, we tested this hypothesis and uncovered the underlying mechanisms in a rat model of CCH induced by bilateral common carotid artery ligation surgery. At 1 week after the surgery, rats received a daily intraperitoneal injection of vehicle or a non-peptidic MAS1 agonist AVE0991 for 8 weeks. During this procedure, cerebral blood flow (CBF) was recorded. The levels of MAS1, amyloid-ß (Aß), neuroinflammatory cytokines, glial cell markers and synaptophysin in the hippocampus were assessed at the end of the treatment period. RESULTS: We showed that AVE0991 significantly alleviated hippocampal synaptic degeneration in rats with CCH. This protection might be achieved by facilitating CBF recovery, reducing hippocampal Aß levels and suppressing neuroinflammatory responses. CONCLUSIONS: These findings indicate that MAS1-mediated signaling may represent a novel therapeutic target for CCH-related neurodegenerative diseases.

3.
J Cell Physiol ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608987

RESUMO

The loss of dermal white adipose tissue (dWAT) is vital to the formation of dermal fibrosis (DF), but the specific mechanism is not well understood. A few studies are reviewed to explore the role of dWAT in the formation of DF. Recent findings indicated that the adipocytes-to-myofibroblasts transition in dWAT reflects the direct contribution to the DF formation. While adipose-derived stem cells (ADSCs) contained in dWAT express antifibrotic cytokines, the loss of ADSCs leads to skin protection decreased, which indirectly exacerbates DF and tissue damage. Therefore, blocking or reversing the adipocytes-to-myofibroblasts transition or improving the survival of ADSCs in dWAT and the expression of antifibrotic cytokines may be an effective strategy for the treatment of DF.

4.
Crit Rev Food Sci Nutr ; : 1-21, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613845

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in elderly people with a high incidence rate and complicated pathogenesis, and causes progressive cognitive deficit and memory impairment. Some natural products and bioactive compounds from natural sources show great potential in the prevention and treatment of AD, such as apple, blueberries, grapes, chili pepper, Monsonia angustifolia, cruciferous vegetables, Herba epimedii, Angelica tenuissima, Embelia ribes, sea cucumber, Cucumaria frondosa, green tea, Puer tea, Amanita caesarea and Inonotus obliquus, via reducing amyloid beta (Aß) deposition, decreasing Tau hyperphosphorylation, regulating cholinergic system, reducing oxidative stress, inhibiting apoptosis and ameliorating inflammation. This review mainly summarizes the effects of some natural products and their bioactive compounds on AD with the potential molecular mechanisms.

5.
Front Immunol ; 12: 711980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594327

RESUMO

Regulatory B cells (Breg) are considered as immunosuppressive cells. Different subsets of Breg cells have been identified both in human beings and in mice. However, there is a lack of unique markers to identify Breg cells, and the heterogeneity of Breg cells in different organs needs to be further illuminated. In this study, we performed high-throughput single-cell RNA sequencing (scRNA-seq) and single-cell B-cell receptor sequencing (scBCR-seq) of B cells from the murine spleen, liver, mesenteric lymph nodes, bone marrow, and peritoneal cavity to better define the phenotype of these cells. Breg cells were identified based on the expression of immunosuppressive genes and IL-10-producing B (B10) cell-related genes, to define B10 and non-B10 subsets in Breg cells based on the score of the B10 gene signatures. Moreover, we characterized 19 common genes significantly expressed in Breg cells, including Fcrl5, Zbtb20, Ccdc28b, Cd9, and Ptpn22, and further analyzed the transcription factor activity in defined Breg cells. Last, a BCR analysis was used to determine the clonally expanded clusters and the relationship of Breg cells across different organs. We demonstrated that Atf3 may potentially modulate the function of Breg cells as a transcription factor and that seven organ-specific subsets of Breg cells are found. Depending on gene expression and functional modules, non-B10 Breg cells exhibited activated the TGF-ß pathway, thus suggesting that non-B10 Breg cells have specific immunosuppressive properties different from conventional B10 cells. In conclusion, our work provides new insights into Breg cells and illustrates their transcriptional profiles and BCR repertoire in different organs under physiological conditions.

6.
Front Cell Infect Microbiol ; 11: 725859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595134

RESUMO

Imported malaria and recurrent infections are becoming an emerging issue in many malaria non-endemic countries. This study aimed to determine the molecular patterns of the imported malaria infections and recurrence. Blood samples were collected from patients with imported malaria infections during 2016-2018 in Guangxi Zhuang Autonomous Region, China. Next-generation amplicon deep-sequencing approaches were used to assess parasite genetic diversity, multiplexity of infection, relapse, recrudescence, and antimalarial drug resistance. A total of 44 imported malaria cases were examined during the study, of which 35 (79.5%) had recurrent malaria infections within 1 year. The majority (91.4%) had one recurrent malaria episode, whereas two patients had two recurrences and one patient had three recurrences. A total of 19 recurrence patterns (the species responsible for primary and successive clinical episodes) were found in patients returning from malaria epidemic countries. Four parasite species were detected with a higher than usual proportion (46.2%) of non-falciparum infections or mixed-species infections. An increasing trend of recurrence infections and reduced drug treatment efficacy were observed among the cases of imported malaria. The high recurrence rate and complex patterns of imported malaria from Africa to non-endemic countries have the potential to initiate local transmission, thereby undermining efforts to eliminate locally acquired malaria. Our findings highlight the power of amplicon deep-sequencing applications in molecular epidemiological studies of the imported malaria recurrences.

7.
ChemMedChem ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34595834

RESUMO

An albumin-binding CsA analogue 4MCsA was achieved by attachment of a thiol-reactive maleimide group at the side-chain of P4 position of CsA derivative. 4MCsA was semi-synthesized from CsA, and the cell-impermeability of albumin-4MCsA was detected by mass spectrometry and a competitive flow cytometry. 4MCsA exhibits inhibition of chemotaxis activity and inflammation by targeting extracellular CypA without immunosuppressive effect and cellular toxicity. These combined results suggested that 4MCsA can be restricted extracellularly through covalently binding to Cys34 of albumin with its maleimide group, and regulate the functions of cyclophilin A extracellularly.

8.
Drug Deliv ; 28(1): 2127-2136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617835

RESUMO

The aim of this study was to develop and evaluate a triptolide phospholipid complex (TPCX) for the treatment of rheumatoid arthritis (RA) by transdermal delivery. TPCX was prepared and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR) analysis, transmission electron microscope (TEM), and scanning electron microscope (SEM). The solubility of TPCX was determined. Then, a TPCX cream was prepared to evaluate its percutaneous permeability and the antiarthritis effect. The transdermal permeability was determined using the Franz method, and a microdialysis system was used for skin pharmacokinetic study. A rat model of RA was prepared to evaluate the pharmacological effects. TPCX increased the solubility of triptolide in water, and the percutaneous permeability of TPCX cream was greatly enhanced compared with triptolide cream. The skin pharmacokinetic study indicated that TPCX cream has a longer biological half-life (t1/2) and mean residence time (MRT), but it has a shorter Tmax than that of triptolide cream in vivo. The area under the curve (AUC0-t)/AUC0-∞) and the peak concentration (Cmax) of TPCX cream were obviously higher than those of triptolide cream. The TPCX-loaded cream alleviated paw swelling and slowed down the progression of arthritis by inhibiting the inflammatory response by down regulating the TNF-α, IL-1ß, and IL-6 levels, thus exhibiting excellent antiarthritic effects. In summary, the prepared TPCX effectively increases the hydrophilicity of triptolide, which is good for its percutaneous absorption and enhances its effect on RA rats. TPCX can be a good candidate for the transdermal delivery to treat RA.

9.
Radiother Oncol ; 164: 163-166, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619235

RESUMO

We assessed the impact of different PCI fractionation schedules (30 Gy in 10 versus 15 fractions) on brain metastases-free survival (BMFS) and toxicity in stage III NSCLC. Our results suggest that 30 Gy in 10 fractions is associated with increased toxicity, while no conclusive evidence of improving BMFS was seen with this schedule.

10.
J Alzheimers Dis ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34487044

RESUMO

BACKGROUND: Abnormal morphology and function of neurons in the prefrontal cortex (PFC) are associated with cognitive deficits in rodent models of Alzheimer's disease (AD), particularly in cortical layer-5 pyramidal neurons that integrate inputs from different sources and project outputs to cortical or subcortical structures. Pyramidal neurons in layer-5 of the PFC can be classified as two subtypes depending on the inducibility of prominent hyperpolarization-activated cation currents (h-current). However, the differences in the neurophysiological alterations between these two subtypes in rodent models of AD remain poorly understood. OBJECTIVE: To investigate the neurophysiological alterations between two subtypes of pyramidal neurons in hAPP-J20 mice, a transgenic model for early onset AD. METHODS: The synaptic transmission and intrinsic excitability of pyramidal neurons were investigated using whole-cell patch recordings. The morphological complexity of pyramidal neurons was detected by biocytin labelling and subsequent Sholl analysis. RESULTS: We found reduced synaptic transmission and intrinsic excitability of the prominent h-current (PH) cells but not the non-PH cells in hAPP-J20 mice. Furthermore, the function of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which mediated h-current was disrupted in the PH cells of hAPP-J20 mice. Sholl analysis revealed that PH cells had less dendritic intersections in hAPP-J20 mice comparing to control mice, implying that a lower morphological complexity might contribute to the reduced neuronal activity. CONCLUSION: These results suggest that the PH cells in the medial PFC may be more vulnerable to degeneration in hAPP-J20 mice and play a sustainable role in frontal dysfunction in AD.

11.
J Int Med Res ; 49(9): 3000605211042503, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34515575

RESUMO

The effects of increasing blood flow on the pathogenic wall shear stress (pWSS) of subclavian arteries (SAs) are currently unclear. Patient-specific models of the SA were constructed based on computed tomographic images from two patients. Using the Ansys Fluent 19.0 transient laminar flow solver, the finite volume method was chosen to solve the Navier-Stokes equation governing fluid behavior. The time-averaged wall shear stress, ratio of risk area, cumulative ratio of risk area (P¯), ratio of risk time, and ratio contour of risk time were calculated to describe the temporal and spatial distributions of pWSS. Virtually all pWSS occurred during the diastolic phase. The P¯ was 2.3 and 1.29 times higher on the left than on the right in Patients 1 (P1) and 2 (P2), respectively. Increasing the blood flow volume of the left SA by 20%, 40%, and 60% led to a 9.27%, 15.10%, and 20.99% decrease in P¯ for P1 and a 5.74%, 11.55%, and 17.14% decrease in P¯ for P2, respectively, compared with baseline values. In conclusion, the left SA showed greater diastolic pWSS than the right SA, and increasing the blood flow volume reduced the pWSS in the left SA.


Assuntos
Modelos Cardiovasculares , Artéria Subclávia , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Hemodinâmica , Humanos , Estresse Mecânico , Artéria Subclávia/diagnóstico por imagem
12.
Small ; 17(41): e2103836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514699

RESUMO

A simple and effective approach is demonstrated to fabricate tough metallosupramolecular hydrogel films of poly(acrylic acid) by one-pot photopolymerization of the precursor solution in the presence of Zr4+ ions that form coordination complexes with the carboxyl groups and serve as the physical crosslinks of the matrix. Both as-prepared and equilibrated hydrogel films are transparent, tough, and stable over a wide range of temperature, ionic strength, and pH. The thickness of the films can be easily tailored with minimum value of ≈7 µm. Owing to the fast polymerization and gelation process, kirigami structures can be facilely encoded to the gel films by photolithographic polymerization, affording versatile functions such as additional stretchability and better compliance of the planar films to encapsulate objects with sophisticated geometries that are important for the design of soft electronics. By stencil printing of liquid metal on the hydrogel film with a kirigami structure, the integrated soft electronics shows good compliance to cover curved surfaces and high sensitivity to monitor human motions. Furthermore, this strategy is applied to diverse natural and synthetic macromolecules containing carboxyl groups to develop tough hydrogel films, which will open opportunities for the applications of hydrogel films in biomedical and engineering fields.

13.
Int J Biol Macromol ; 190: 754-762, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517027

RESUMO

Development of biological dressings has received widespread attentions due to their good breathability, biocompatibility, wettability, and the ability to absorb wound exudate without sticking to the wound. However, current proposed antibacterial hydrogels are limited antibacterial ability, short service life and insufficient biocompatibility, which are still challenging to address intricate practical applications. Here we develop a cationic peptide-based, salt-responsive hydrogel dressing with triple functions of antifouling, bactericidal, and bacterial release by combining ε-poly-l-lysine, poly(ethylene glycol) diglycidyl ether, and poly(DVBAPS-co-GMA) via a one-pot method. These designed hydrogels enabled to further quaternize to enhance antibacterial property due to the presence of amine residues. The resultant hydrogels present good antibacterial activity (>90%), biocompatibility, cell proliferation efficacy (~400%) and adhesiveness. Through in vivo and in vitro antibacterial capability tests, it is also found that hydrogels have good antifouling and sterilization capabilities, and the sterilization rate could reach up to ~96%. In addition, ~94% of the attached bacterial can be released after saline/water switching for several cycles. Taken together, the designed multiple antibacterial dressing prolongs the lifespan relying on reversible salt-responsive release and meet special requirements for wound healing. This work not only provides a platform to highlight its promising potentials in wound management but also gives a custom strategy to biomedical applications.

14.
Zhen Ci Yan Jiu ; 46(9): 794-9, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34558247

RESUMO

OBJECTIVE: To observe the clinical effect of moxibustion therapy based on "sancai yizhi" (benefiting the intelligence) therapy on the improvements of memory function and serum protein markers, Aß1-42, Tau and phosphorylated Tau (P-tau) in the patients with amnestic mild cognitive impairment (aMCI), and has a preliminary exploration on its peripheral mechanism. METHODS: A total of 120 patients with aMCI were divided into a moxibustion group and a medication group using a random number table, 60 patients in each group. In the moxibustion group, 6 cases were dropped out and 5 cases were withdrawn, and then 49 cases accomplished the trial finally. In the medication group, 8 cases were dropped out and 6 ceases were withdrawn, thus 46 cases finally accomplished the trial. In the moxibustion group, moxibustion therapy was provided at Baihui (GV20), Shenque (CV8) and bilateral Yongquan (KI1), once every other day, 20 minutes each time, totally for 8 weeks. In the medication group, donepezil hydrochloride tablets were administered orally, 5 mg once a day, consecutively for 8 weeks. The scores of Rivermead behavioral memory test (RBMT) and Monterey cognitive assessment (MoCA) scale were adopted as the indicators to evaluate the therapeutic effect after treatment in the two groups. Enzyme linked immunosorbent assay (ELISA) was used to detect the changes of the levels of serum protein marker levels, i.e. Aß1-42, Tau and P-tau before and after treatment in the patients of two groups. RESULTS: Compared with the scores before treatment, RBMT score and MoCA score all increased after treatment in the patients of two groups (P<0.05). Compared with the medication group at the same time points, RBMT score increased significantly (P<0.05) in the moxibustion group after treatment. In the moxibustion group, as compared with the levels before treatment, the levels of serum Aß1-42,Tau and P-tau decreased after treatment in the patients (P<0.05). But in the medication group, the levels of serum Aß1-42 and P-tau were reduced (P<0.05). Compared with the medication group at the same time points, there were no significant differences in the changes of serum Aß1-42,Tau and P-tau in the moxibustion group (P>0.05). CONCLUSION: Moxibustion therapy based on "sancai yizhi" theory improves the cognitive function in the patients with aMCI and it affects the levels of serum Aß1-42, Tau and P-tau, which may be the reason for the improvement of cognitive function in the patients with aMCI.


Assuntos
Disfunção Cognitiva , Moxibustão , Pontos de Acupuntura , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Medicamentos de Ervas Chinesas , Humanos , Memória
15.
Chem Commun (Camb) ; 57(80): 10371-10374, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34541598

RESUMO

A transformative concept of solid electrochemical corrosion has been put forward, in which solid-state electrolyte LiPON has been applied to replace the liquid one to prelithiate graphite with Li-metal. Thus, high prelithiation efficiency and low polarization of the treated anode can be obtained, with a unique mosaic structure left at the surface.

16.
ACS Appl Mater Interfaces ; 13(39): 47090-47099, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559520

RESUMO

Intelligent polymer nanocapsules that can not only encapsulate substances efficiently but also release them in a controllable manner hold great potential in many applications. To date, although intensive efforts have been made to develop intelligent polymer nanocapsules, how to construct the well-defined core/shell structure with high stability via a straightforward method remains a considerable challenge. In this work, the target novel zwitterionic nanocapsules (ZNCs) with a stable hollow structure were synthesized by inverse reversible addition fragmentation transfer (RAFT) miniemulsion interfacial polymerization. The shell gradually grew from the water/oil interface due to the interfacial polymerization, accompanied by the cross-linking of the polyzwitterionic networks, where the core/shell structure could be well-tuned by adjusting the precursor compositions. The resultant ZNCs exhibited a salt-/thermo-induced swelling behavior through the phase transition of the external zwitterionic polymers. To further investigate the functions of ZNCs, different substances, such as methyl orange and bovine serum albumin (BSA), were encapsulated into the ZNCs with a high encapsulation efficiency of 89.3 and 93.6%, respectively. Interestingly, the loaded substances can be controllably released in aqueous solution triggered by salt or temperature variations, and such responsiveness also can be utilized to bounce off the bacteria adhered on target surfaces. We believe that these designed salt- and thermo-responsive intelligent polymer nanocapsules with well-defined core/shell structures and antifouling surfaces should be a promising platform for biomedical and saline related applications.

17.
Nutrients ; 13(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34579087

RESUMO

Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.

18.
Analyst ; 146(19): 5913-5922, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570848

RESUMO

To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit the quantitative impact of hemodynamic stresses on endothelial function and seek innovative approaches to prevent circulatory system diseases. Although microfluidic technology has been regarded as an effective method to create physiological microenvironments, a microfluidic system to precisely reproduce physiological arterial hemodynamic stress microenvironments has not been reported yet. In this paper, a novel microfluidic chip consisting of a cell culture chamber with on-chip afterload components designed by the principle of input impedance to mimic the global hemodynamic behaviors is proposed. An external feedback control system is developed to accurately generate the input pressure waveform. A lumped parameter hemodynamic model (LPHM) is built to represent the input impedance to mimic the on-chip global hemodynamic behaviors. Sensitivity analysis of the model parameters is also elaborated. The performance of reproducing physiological blood pressure and wall shear stress is validated by both numerical characterization and flow experiment. Investigation of intracellular calcium ion dynamics in human umbilical vein endothelial cells is finally conducted to demonstrate the biological applicability of the proposed microfluidic system.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Pressão Sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Resistência ao Cisalhamento , Estresse Mecânico
20.
Artigo em Inglês | MEDLINE | ID: mdl-34380082

RESUMO

BACKGROUND: Previous sleep EEG studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors, such as the various medication therapy and symptom heterogeneity. The current study aimed to regard AVHs as a pointcut to downscale the heterogeneity of SCZ, and explore whether some of sleep architecture and spindle parameters were more severely impaired in SCZ with auditory verbal hallucinations (AVHs) compared to those without AVHs. METHODS: 90 SCZ with AVHs, 92 SCZ without AVHs and 91 healthy controls were recruited and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators were analyzed. RESULTS: Deficits of sleep spindle activities at prefrontal electrodes and intra-hemispheric spindle coherence were observed in both AVHs and non-AVHs groups, several of which were more serious in AVHs group. In addition, deficits of spindle activities at central and occipital electrodes and inter-hemispheric spindle coherence mainly manifested accompanying AVHs symptoms, most of which were retained in the medication-naïve first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS: Our results suggested that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...