Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt A): 130189, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265382

RESUMO

This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Humanos , Solo/química , Tensoativos/química , Poluentes Orgânicos Persistentes , Poluentes do Solo/metabolismo , Ecossistema
2.
J Environ Manage ; 325(Pt B): 116558, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302299

RESUMO

Tile-back type slopes comprise ephemeral gullies (EGs) and hillslopes; they are a unique and widely distributed micro-landform in the Loess Plateau region of China. Gully erosion from these landforms is a serious issue, but the micro-landform makes the erosion process and its estimation complex. Quantifying soil erosion processes and their distribution characteristics at different positions on tile-back type slopes will provide a clearer picture for ecological restoration to control further soil degradation. This study investigated the erosion process of tile-back type slope with non-uniform slopes using a 3D photo-reconstruction method during eight successive simulated rainfall events. The results showed that EG erosion began with a chain of intermittent headcuts. When the accumulated rainfall reached 76 mm, serious collapses dramatically increased the amount of sediment by 216% after the first rainfall (cumulative rainfall was about 15 mm). We quantified the sediment contribution of EG erosion (46.20%), rill erosion (35.62%), and inter-rill erosion (18.18%) to total soil loss. The erosion area of the steep slope section and extremely steep slope section accounted for 33.26% and 66.74% of the total erosion area, respectively. Moreover, sediment amounts significantly correlated with morphological parameters, particularly the amount of EG erosion and maximum gully depth, with a correlation coefficient of 0.98. Cumulative gully length and erosion area had the greatest effect on rill erosion, with a correlation coefficient of 0.97. These results provide insight into the qualitative and quantitative understanding of EG erosion process on Loess Plateau of China and an important reference for the rational arrangement of EG control measures.


Assuntos
Imageamento Tridimensional , Solo , China
3.
Plant Genome ; : e20279, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36366733

RESUMO

Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS. This review examines recent advances in plant responses to DS to expand our understanding of DS-associated mechanisms. Suboptimal water sources adversely affect crop growth and yields through physical impairments, physiological disturbances, biochemical modifications, and molecular adjustments. To control the devastating effect of DS in crop plants, it is important to understand its consequences, mechanisms, and the agronomic and genetic basis of DS for sustainable production. In addition to plant responses, we highlight several mitigation options such as omics approaches, transgenics breeding, genome editing, and biochemical to mechanical methods (foliar treatments, seed priming, and conventional agronomic practices). Further, we have also presented the scope of conventional and speed breeding platforms in helping to develop the drought-smart future crops. In short, we recommend incorporating several approaches, such as multi-omics, genome editing, speed breeding, and traditional mechanical strategies, to develop drought-smart cultivars to achieve the 'zero hunger' goal.

4.
Sci Total Environ ; 858(Pt 1): 159757, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36349629

RESUMO

Understanding how ecosystem services (ESs) interact with urbanization is crucial for formulating sustainable development policies. Although previous literature has paid attention to this topic, information on complex spatiotemporal interactions between ESs and urbanization remains inadequate, especially in the Yellow River Basin (YRB), a typical basin that will usher in rapid progress of ecological protection and urbanization. In this study, we constructed a framework for evaluating ecosystem service values (ESV) and urbanization by synthesizing multi-source data in the YRB from 1980 to 2018, and further revealing the interactive coercing mechanisms of ESV and urbanization. We found that the YRB has experienced rapid urbanization, with an increasing growth trend for all urbanization indicators, especially from 2000 onwards. ESV had a significant negative correlation with urbanization, showing a decreasing trend with urbanization growth before 2000, but reversed this trend after 2000 as ecological restoration projects offset the adverse effects of urbanization on ESV. Furthermore, while significant negative spatial correlations occurred between ESV and urbanization, these correlations diminished over time. The results also revealed differences in the spatial correlations between global and local scales, with three types of spatial correlations at the local scale: High-Low (high ESV and low urbanization), Low-High (low ESV and high urbanization), and Low-Low (low ESV and low urbanization). Our results contribute to understanding the interactive coercing relationship between ESV and urbanization in the YRB, particularly at the local scale, and insights into coordinating future ecological protection and urban development.

5.
Environ Pollut ; : 120632, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36384210

RESUMO

Soil acidification in managed ecosystems such as agricultural lands principally result from increased releasing of protons (H+) from the transformation reactions of carbon (C), nitrogen (N) and sulphur (S) containing compounds. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to soil environment, food security, and human health. Biochar derived from organic residues are becoming a source of carbon input to soil and provide multifunctional values. Biochar can be alkaline in nature with the level of alkalinity dependent upon the feedstock and processing conditions. This review covers the fundamental aspects of soil acidification and of the use of biochar to address constraints related to acidic soil. Biochar are increasingly considered as an effective soil amendment for improving soil acidity owing to its liming potential, thereby enhancing soil fertility and productivity in acid soils. The ameliorant effect on acid soils is mainly because of the dissolution of carbonates, (hydro)-oxides of the ash fraction of biochar and potential use by microorganisms.

6.
Front Plant Sci ; 13: 1048433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407625

RESUMO

Green and blue mold of citrus are threatening diseases that continuously inflict economic post-harvest loss. The suppressive effect of salicylic (SA) and Cinnamomum verum (CV) on green and blue mold of sweet oranges was investigated in this study. Among five tested plant extracts methanolic extract of Cinnamon caused the highest colony growth inhibition of P. digitatum and P. italicum in an in vitro antifungal assay. The methanolic extract of Cinnamon in combination with SA showed the lowest disease incidence and severity of green and blue mold on citrus fruit without affecting the fruit quality. Transcriptional profiling of defense enzymes revealed that the polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) genes were upregulated in fruit treated with CV, SA, and their combination compared to the control. The treatment SA+CV caused the highest upsurge in PPO, POD, and PAL gene expression than the control. Furthermore, the biochemical quantification of PPO, POD and PAL also revealed a similar pattern of activity. The present findings unravel the fact that the escalation in the activity of tested defense enzymes is possibly associated with the reduced incidence of blue and green molds. In conclusion, the study unveils the promising suppressive potential of SA+CV against green and blue mold by regulating the expression of PPO, POD, and PAL genes. Therefore, these treatments can find a role as safer alternatives to chemicals in the management of post-harvest green and blue mold.

7.
Sci Total Environ ; 858(Pt 2): 159837, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36411672

RESUMO

Groundwater recharge reduces due to high transpiration from shallow-rooted to deep-rooted afforestation. However, reaching a steady state in recharge process is challenging and no methods are available for assessing potential groundwater recharge under unsteady state. Hence, this study developed a new method to quantify groundwater recharge in the unsteady state by (1) calculating the water age (A2) at maximum root depth (D2) for deep-rooted afforestation using the chloride accumulative age method; (2) determining the soil depth (D1) corresponding to A2 under shallow-rooted vegetation using the multi-year average pore water velocity multiplied by A2; (3) calculating the reduction in groundwater recharge (∆R) from shallow- to deep-rooted afforestation as the depth difference multiplied by the average water content between D1 and D2, divided by stand age. The average groundwater recharge for deep-rooted afforestation is equal to the average annual groundwater recharge under shallow-rooted vegetation minus ∆R. Soil cores with >25 m soil profiles below four land-use types of Hippophae rhamnoides Linn. (H. rhamnoides), Platycladus orientalis (L.) Franco (P. orientalis), Robinia pseudoacacia L. (R. pseudoacacia), and grassland were collected to measure soil water content, root distribution, and chloride and tritium contents. The results revealed that: (1) maximum root depths were 11.0 ± 0.5, 20.2 ± 1.2, and 22.6 ± 0.8 m, with soil water deficits of 373.48, 823.65, and 1847.92 mm under H. rhamnoides, P. orientalis, and R. pseudoacacia, respectively; (2) groundwater recharge following land-use change has not reached a steady state; (3) an average annual groundwater recharge was 89.12 mm yr-1 under grassland, amounting to 16 % of the average annual precipitation; deep-rooted afforestation did not significantly differ, with 83.55, 84.91, and 85.65 mm yr-1 under H. rhamnoides, P. orientalis, and R. pseudoacacia, respectively. This study contributes to a rational assessment of groundwater resources under unsteady state during land-use change.

8.
Front Plant Sci ; 13: 980046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275600

RESUMO

Growth stimulating bacteria help remediate dry arid soil and plant stress. Here, Pseudomonas sp. and Pantoea sp. we used to study the stress ecology of Hordeum vulgare and the environmental impact of water deficit on soil characteristics, growth, photosynthesis apparatus, mineral acquisition and antioxidiant defense. Plants inoculated with Pseudomonas or Pantoea had significantly higher (about 2 folds) soil carbon flux (soil respiration), chlorophyll levels (18%), net photosynthetic rate (33% in Pantoea and 54% in Pseudomonas), (44%) stomatal conductance than uninoculated plants in stressed conditions. Both bacterial strains improved leaf growth (23-29%) and root development under well-watered conditions but reduced around (25%) root biomass under drought. Plants inoculated with Pseudomonas or Pantoea under drought also increased of about 27% leaf respiration and transpiration (48%) but decreased water use efficiency, photoinhibition (91%), and the risk of oxidative stress (ETR/A) (49%). Drought stress increased most of the studied antioxidant enzymatic activities in the plants inoculated with Pseudomonas or Pantoea, which reduce the membrane damage and protect plants form oxidative defenses. Drought stress increased K+ acquisition around 50% in both shoots inoculated with Pseudomonas or Pantoea relative to non-stressed plants. Plants inoculated with Pseudomonas or Pantoea increased shoot Na+ while root Na+ only increased in plants inoculated with Pseudomonas in stressed conditions. Drought stress increased shoot Mg2+ in plants inoculated with Pseudomonas or Pantoea but did not affect Ca2+ relative to non-stressed plants. Drought stress increased about 70% K+/Na+ ratio only in plants inoculated with Pseudomonas relative to non-stressed plants. Our results indicate that inoculating barley with the studied bacterial strains increases plant biomass and can therefore play a role in the environmental remediation of drylands for food production.

9.
Environ Sci Pollut Res Int ; 29(56): 84076-84095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36258111

RESUMO

The notion of food security is a global phenomenon that impinges on every human. Efforts to increase productivity and yields have historically degraded the environment and reduced biodiversity and ecosystem services, with the significant impact on the poor. Sustainable agriculture-farming in sustainable ways based on an understanding of ecosystem services-is a practical option for achieving global food security while minimizing further environmental degradation. Sustainable agricultural systems offer ecosystem services, such as pollination, biological pest control, regulation of soil and water quality, maintenance of soil structure and fertility, carbon sequestration and mitigation of greenhouse gas emissions, nutrient cycling, hydrological services, and biodiversity conservation. In this review, we discuss the potential of sustainable agriculture for achieving global food security alongside healthy ecosystems that provide other valuable services to humankind. Too often, agricultural production systems are considered separate from other natural ecosystems, and insufficient attention has been paid to how services can flow to and from agricultural production systems to surrounding ecosystems. This review also details the trade-offs and synergies between ecosystem services, highlights current knowledge gaps, and proposes areas for future research.


Assuntos
Agricultura , Ecossistema , Humanos , Biodiversidade , Solo , Segurança Alimentar , Conservação dos Recursos Naturais , Abastecimento de Alimentos
10.
Front Plant Sci ; 13: 972856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186053

RESUMO

Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.

11.
Front Plant Sci ; 13: 999505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262650

RESUMO

The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.

12.
J Sci Food Agric ; 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273267

RESUMO

Wheat grain quality, an important determinant for human nutrition, is often overlooked when improving crop production for stressed environments. Climate change makes this task more difficult by imposing combined stresses. The scenarios relevant to climate change include elevated CO2 concentrations (eCO2 ) and extreme climatic events such as drought, heat waves, and salinity stresses. However, data on wheat quality in terms of climate change are limited, with no concerted efforts at the global level to provide an equitable and consistent climate risk assessment for wheat grain quality. Climate change induces changes in the quality and composition of wheat grain, a premier staple food crop globally. Climate-change events, such as eCO2 , heat, drought, salinity stress stresses, heat + drought, eCO2 + drought, and eCO2 + heat stresses, alter wheat grain quality in terms of grain weight, nutrient, anti-nutrient, fiber, and protein content and composition, starch granules, and free amino acid composition. Interestingly, in comparison with other stresses, heat stress and drought stress increase phytate content, which restricts the bioavailability of essential mineral elements. All climatic events, except for eCO2 + heat stress, increase grain gliadin content in different wheat varieties. However, grain quality components depend more on inter-varietal difference, stress type, and exposure time and intensity. The climatic events show differential regulation of protein and starch accumulation, and mineral metabolism in wheat grains. Rapid climate shifting impairs wheat productivity and causes grain quality to deteriorate by interrupting the allocation of essential nutrients and photoassimilates. © 2022 Society of Chemical Industry.

13.
Front Plant Sci ; 13: 965878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212378

RESUMO

High-throughput sequencing technologies (HSTs) have revolutionized crop breeding. The advent of these technologies has enabled the identification of beneficial quantitative trait loci (QTL), genes, and alleles for crop improvement. Climate change have made a significant effect on the global maize yield. To date, the well-known omic approaches such as genomics, transcriptomics, proteomics, and metabolomics are being incorporated in maize breeding studies. These approaches have identified novel biological markers that are being utilized for maize improvement against various abiotic stresses. This review discusses the current information on the morpho-physiological and molecular mechanism of abiotic stress tolerance in maize. The utilization of omics approaches to improve abiotic stress tolerance in maize is highlighted. As compared to single approach, the integration of multi-omics offers a great potential in addressing the challenges of abiotic stresses of maize productivity.

14.
Sci Rep ; 12(1): 17111, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224202

RESUMO

Water shortages threaten agricultural sustainability in the semi-arid areas of the Loess Plateau. Judicious mulching management can improve water conservation practices to alleviate this issue while increasing crop productivity. We investigated the effect of straw strip mulching and film mulching on soil water consumption, temperature, growth, grain yield, and economic income of soybean [Glycine max(Linn.) Merr.] from 2017 to 2018 in Qingyang on the semi-arid Loess Plateau in China using four treatments: (a) alternating ridges and furrows with ridges mulched with white polyethylene film (PMP), (b) alternating flat and bare land with only the plat mulched by white polyethylene film (PMF), (c) alternating strips mulched with maize (Zea mays L.) straw (SM), and (d) traditional land planting without mulching (CK). The mulching treatments (PMP, PMF, and SM) increased soil water consumption and soil water use efficiency. The SM, PMF, and PMP treatments had 12.3-12.5, 16.8-22.1, and 23.2-24.2 mm higher soil water consumption (0-120 cm depth) than CK, most of which occurred in the 60-120 cm soil layer. Compared with CK, PMP and PMF significantly increased soil temperature by 1.30-1.31 °C and 0.76-1.00 °C, soybean grain yield by 38.6-39.0 % and 38.8-44.2 %, and water use efficiency (WUE) by 27.7-32.8 % and 30.8-37.5 %, respectively, while SM significantly decreased soil temperature by 0.96-1.15 °C, and increased grain yield by 21.8-25.4 % and WUE by 16.9-21.9 %. PMP and PMF did not significantly change soil water consumption, WUE, or grain yield. The SM treatment increased net income by 501.3-691.7 and 1914.5-2244.9 CNY ha-1 relative to PMP and CK, respectively, but PMF and SM did not significantly differ. Therefore, the SM system could help increase grain yields and economic returns in dryland soybean production, avoiding the adverse effects of the increasingly popular plastic mulching approach.


Assuntos
Soja , Água , Agricultura , China , Grão Comestível/química , Plásticos , Polietilenos , Solo , Água/análise , Zea mays
15.
Front Plant Sci ; 13: 975852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119597

RESUMO

Defensin genes form part of a plant's defense system and are activated when exposed to biotic or abiotic stress. They play a vital role in controlling many signaling pathways involved in various plant defense mechanisms. This research aimed to isolate and characterize novel defensin genes from selected medicinally important plants to explore their signaling mechanisms and defense associated roles for breeding. The DNA of Albizia lebbeck and Moringa oleifera was subjected to PCR amplification using gene-specific primers of defensin genes. Two novel defensin genes were isolated in each species, with sequence lengths of 300 bp in A. lebbeck and 150 bp in M. oleifera. In-silico analysis undertaken to retrieve and align their orthologous sequences revealed 100% similarity of the A. lebbeck gene with the Musa acuminate peroxidase P7-like gene and 85% similarity of the M. oleifera gene with the Manihot esculenta GDP dissociation inhibitor gene. The reliability, stability and physiochemical properties of homology models of these sequences was confirmed through online computational studies. This preliminary study confirmed the presence of novel genes with peroxidase P7 and Rab GDP dissociation inhibitor gene-like activity in A. lebbeck and M. oleifera, respectively, and their potential defense role in plants. Thus, the defensin genes of both species could be used in the synthesis of transgenic self-defensive plants with increased disease resistance and as potential candidates for improved crop production and thraputic formulation in the future.

16.
Front Plant Sci ; 13: 843911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082300

RESUMO

Micronutrient malnutrition is a serious concern in many parts of the world; therefore, enhancing crop nutrient content is an important challenge. Chickpea (Cicer arietinum L.), a major food legume crop worldwide, is a vital source of protein and minerals in the vegetarian diet. This study evaluated a diverse set of 258 chickpea germplasm accessions for 12 key nutritional traits. A significant variation was observed for several nutritional traits, including crude protein (16.56-24.64/100 g), ß-Carotene (0.003-0.104 mg/100 g), calcium (60.69-176.55 mg/100 g), and folate (0.413-6.537 mg/kg). These data, combined with the available whole-genome sequencing data for 318,644 SNPs, were used in genome-wide association studies comprising single-locus and multi-locus models. We also explored the effect of varying the minor allele frequency (MAF) levels and heterozygosity. We identified 62 significant marker-trait associations (MTAs) explaining up to 28.63% of the phenotypic variance (PV), of which nine were localized within genes regulating G protein-coupled receptor signaling pathway, proteasome assembly, intracellular signal transduction, and oxidation-reduction process, among others. The significant effect MTAs were located primarily on Ca1, Ca3, Ca4, and Ca6. Importantly, varying the level of heterozygosity was found to significantly affect the detection of associations contributing to traits of interest. We further identified seven promising accessions (ICC10399, ICC1392, ICC1710, ICC2263, ICC1431, ICC4182, and ICC16915) with superior agronomic performance and high nutritional content as potential donors for developing nutrient-rich, high-yielding chickpea varieties. Validation of the significant MTAs with higher PV could identify factors controlling the nutrient acquisition and facilitate the design of biofortified chickpeas for the future.

17.
Physiol Mol Biol Plants ; 28(7): 1437-1452, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051229

RESUMO

Drought is a major abiotic stress that drastically reduces chickpea yields. The present study was aimed to identify drought-responsive traits in chickpea by screening a recombinant inbred line population derived from an inter-specific cross between drought cultivar of GPF2 (C. arietinum L.) and drought sensitive accession of ILWC292 (C. reticulatum), at two locations in India. Twenty-one traits, including twelve morphological and physiological traits and nine root-related traits were measured under rainfed (drought-stress) and irrigated conditions (no-stress). High genotypic variation was observed among RILs for yield and root traits indicated that selection in these germplasms would be useful in achieving genetic progress. Both correlation and principal component analysis revealed that plant height, number of pods per plant, biomass, 100-seed weight, harvest index, membrane permeability index, and relative leaf water content were significantly correlated with yield under both irrigated and drought stress environments. Root length had significant positive correlations with all root-related traits except root length density in drought-stressed plants. Path analysis and multiple and stepwise regression analyses showed that number of pods per plant, biomass, and harvest index were major contributors to yield under drought stress conditions. Thus, a holistic approach across these analyses identified number of pods per plant, biomass, harvest index, and root length as key traits for improving chickpea yield through indirect selection for developing drought-tolerant cultivars. Overall, on the basis of yield components morphological and root traits, a total of 15 promising RILs were identified for their use in chickpea breeding programs for developing drought tolerant cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01218-z.

18.
Front Plant Sci ; 13: 946922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160964

RESUMO

Salt stress severely limits the productivity of crop plants worldwide and its detrimental effects are aggravated by climate change. Due to a significant world population growth, agriculture has expanded to marginal and salinized regions, which usually render low crop yield. In this context, finding methods and strategies to improve plant tolerance against salt stress is of utmost importance to fulfill food security challenges under the scenario of the ever-increasing human population. Plant priming, at different stages of plant development, such as seed or seedling, has gained significant attention for its marked implication in crop salt-stress management. It is a promising field relying on the applications of specific chemical agents which could effectively improve plant salt-stress tolerance. Currently, a variety of chemicals, both inorganic and organic, which can efficiently promote plant growth and crop yield are available in the market. This review summarizes our current knowledge of the promising roles of diverse molecules/compounds, such as hydrogen sulfide (H2S), molecular hydrogen, nitric oxide (NO), hydrogen peroxide (H2O2), melatonin, chitosan, silicon, ascorbic acid (AsA), tocopherols, and trehalose (Tre) as potential primers that enhance the salinity tolerance of crop plants.

19.
Front Plant Sci ; 13: 961872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176673

RESUMO

Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.

20.
Plants (Basel) ; 11(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015478

RESUMO

High temperature and water deficit are the most critical yield-limiting environmental factors for wheat in rainfed environments. It is important to understand the heat avoidance mechanisms and their associations with leaf morpho-physiological traits that allow crops to stay cool and retain high biomass under warm and dry conditions. We examined 20 morpho-physiologically diverse wheat genotypes under ambient and elevated temperatures (Tair) to investigate whether increased water use leads to high biomass retention due to increased leaf cooling. An experiment was conducted under well-watered conditions in two partially controlled glasshouses. We measured plant transpiration (Tr), leaf temperature (Tleaf), vapor pressure deficit (VPD), and associated leaf morpho-physiological characteristics. High water use and leaf cooling increased biomass retention under high temperatures, but increased use did not always increase biomass retention. Some genotypes maintained biomass, irrespective of water use, possibly through mechanisms other than leaf cooling, indicating their adaptation under water shortage. Genotypic differences in leaf cooling capacity did not always correlate with Tr (VPD) response. In summary, the contribution of high water use or the leaf cooling effect on biomass retention under high temperature is genotype-dependent and possibly due to variations in leaf morpho-physiological traits. These findings are useful for breeding programs to develop climate resilient wheat cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...