Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Genet ; : 103776, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31562959

RESUMO

Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.

2.
Genet Med ; 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337883

RESUMO

PURPOSE: XY individuals with disorders/differences of sex development (DSD) are characterized by reduced androgenization caused, in some children, by gonadal dysgenesis or testis regression during fetal development. The genetic etiology for most patients with 46,XY gonadal dysgenesis and for all patients with testicular regression syndrome (TRS) is unknown. METHODS: We performed exome and/or Sanger sequencing in 145 individuals with 46,XY DSD of unknown etiology including gonadal dysgenesis and TRS. RESULTS: Thirteen children carried heterozygous missense pathogenic variants involving the RNA helicase DHX37, which is essential for ribosome biogenesis. Enrichment of rare/novel DHX37 missense variants in 46,XY DSD is highly significant compared with controls (P value = 5.8 × 10-10). Five variants are de novo (P value = 1.5 × 10-5). Twelve variants are clustered in two highly conserved functional domains and were specifically associated with gonadal dysgenesis and TRS. Consistent with a role in early testis development, DHX37 is expressed specifically in somatic cells of the developing human and mouse testis. CONCLUSION: DHX37 pathogenic variants are a new cause of an autosomal dominant form of 46,XY DSD, including gonadal dysgenesis and TRS, showing that these conditions are part of a clinical spectrum. This raises the possibility that some forms of DSD may be a ribosomopathy.

3.
Prenat Diagn ; 39(11): 986-992, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.

4.
Am J Hum Genet ; 105(1): 198-212, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178125

RESUMO

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.

5.
J Assist Reprod Genet ; 36(5): 973-978, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30850901

RESUMO

BACKGROUND: The prevalence of chromosomal translocations is 1/500 in the general population. While in the vast majority of cases, carriers have a normal phenotype; they can present with difficulty conceiving due to the presence of a proportion of unbalanced gametes as a consequence of abnormal chromosomal segregation during meiosis. Since complex translocations involve three or more chromosomes, meiotic segregation leads to a greater number of possible combinations which effectively complicate both their study and therapeutic care. CASE PRESENTATION: We report on the case of a male carrier of a complex homogeneous double Robertsonian translocation: 44, XY, der(13;14)(q10;q10),der(21;22)(q10;q10). We studied his meiotic segregation by FISH on spermatozoa from the initial sample, as well as following discontinuous gradient centrifugation and after incubation in an hypo-osmotic solution. CONCLUSION: We report a method to study in a simple single-step manner the meiotic segregation of double Robertsonian translocations in spermatozoa. Further, our results suggest that reproductive prognosis of affected individuals may be markedly improved by HOST-based sperm selection (HBSS).

6.
Bull Cancer ; 106(5): 461-467, 2019 May.
Artigo em Francês | MEDLINE | ID: mdl-30910228

RESUMO

Atypical genital development (AGD), also called disorders of sex development are a set of miscellaneous pathologies who have in common a morphological and/or functional abnormality of the internal and/or external genital organs. The Chicago classification identifies 3 major groups based on karyotype, hormone balance and genetic studies. Some AGD predispose to the occurrence of tumors, mainly malignant germ cell tumors. The tumor risk depends on many factors: the type of AGD, the position of the gonad, the age of the patient, the phenotype, the function of the gonad and the presence of germ cells in the gonad. AGD with the highest tumor risk are those with gonadal dysgenesis, implying an incomplete differentiation of the bipotential gonad (dysplasia). Monitoring of patients with AGD and indication of prophylactic gonadectomies should be individualized according to tumor risk.


Assuntos
Disgenesia Gonadal/complicações , Neoplasias Ovarianas/etiologia , Neoplasias Testiculares/etiologia , Feminino , Disgenesia Gonadal/classificação , Humanos , Masculino , Neoplasias Ovarianas/epidemiologia , Fatores de Risco , Neoplasias Testiculares/epidemiologia
7.
Eur J Endocrinol ; 179(3): 181-190, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29973376

RESUMO

OBJECTIVE: Few studies of patients with a 45,X/46,XY mosaicism have considered those with normal male phenotype. The purpose of this study was to evaluate the clinical outcome of 45,X/46,XY boys born with normal or minor abnormalities of external genitalia, notably in terms of growth and pubertal development. METHODS: Retrospective longitudinal study of 40 patients followed between 1982 and 2017 in France. RESULTS: Twenty patients had a prenatal diagnosis, whereas 20 patients had a postnatal diagnosis, mainly for short stature. Most patients had stunted growth, with abnormal growth spurt during puberty and a mean adult height of 158 ± 7.6 cm, i.e. -2.3 DS with correction for target height. Seventy percent of patients presented Turner-like syndrome features including cardiac (6/23 patients investigated) and renal malformations (3/19 patients investigated). Twenty-two patients had minor abnormalities of external genitalia. One patient developed a testicular embryonic carcinoma, suggesting evidence of partial gonadal dysgenesis. Moreover, puberty occurred spontaneously in 93% of patients but 71% (n = 5) of those evaluated at the end of puberty presented signs of declined Sertoli cell function (low inhibin B levels and increased FSH levels). CONCLUSION: This study emphasizes the need to identify and follow-up 45,X/46,XY patients born with normal male phenotype until adulthood, as they present similar prognosis than those born with severe genital anomalies. Currently, most patients are diagnosed in adulthood with azoospermia, consistent with our observations of decreased testicular function at the end of puberty. Early management of these patients may lead to fertility preservation strategies.


Assuntos
Cromossomos Humanos X , Transtorno 46,XY do Desenvolvimento Sexual/patologia , Genitália/anormalidades , Mosaicismo , Aberrações dos Cromossomos Sexuais , Transtornos dos Cromossomos Sexuais/patologia , Adulto , Azoospermia/diagnóstico , Azoospermia/genética , Estatura , Criança , Feminino , Seguimentos , França , Genitália/crescimento & desenvolvimento , Genitália/patologia , Transtornos do Crescimento/genética , Humanos , Recém-Nascido , Cariotipagem , Estudos Longitudinais , Masculino , Monossomia , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Puberdade , Estudos Retrospectivos
8.
Endocr Connect ; 7(3): 395-402, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29420188

RESUMO

Human 3 beta-hydroxysteroid dehydrogenase deficiency (3b-HSD) is a very rare form of congenital adrenal hyperplasia resulting from HSD3B2 gene mutations. The estimated prevalence is less than 1/1,000,000 at birth. It leads to steroidogenesis impairment in both adrenals and gonads. Few data are available concerning adult testicular function in such patients. We had the opportunity to study gonadal axis and testicular function in a 46,XY adult patient, carrying a HSD3B2 mutation. He presented at birth a neonatal salt-wasting syndrome. He had a micropenis, a perineal hypospadias and two intrascrotal testes. HSD3B2 gene sequencing revealed a 687del27 homozygous mutation. The patient achieved normal puberty at the age of 15 years. Transition from the paediatric department occurred at the age of 19 years. His hormonal profile under hydrocortisone and fludrocortisone treatments revealed normal serum levels of 17OH-pregnenolone, as well as SDHEA, ACTH, total testosterone, inhibin B and AMH. Pelvic ultrasound identified two scrotal testes of 21 mL each, without any testicular adrenal rest tumours. His adult spermatic characteristics were normal, according to WHO 2010 criteria, with a sperm concentration of 57.6 million/mL (N > 15), 21% of typical forms (N > 4%). Sperm vitality was subnormal (41%; N > 58%). This patient, in contrast to previous reports, presents subnormal sperm parameters and therefore potential male fertility in a 24-years-old patient with severe 3b-HSD deficiency. This case should improve counselling about fertility of male patients carrying HSD3B2 mutation.

9.
Am J Hum Genet ; 102(3): 487-493, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478779

RESUMO

Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs∗75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs∗77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 × 10-8). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human "pro-ovary" and "anti-testis" sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology.

10.
Hum Mol Genet ; 27(7): 1228-1240, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373757

RESUMO

SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex determination. We identified two individuals with 46, XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46, XY DSD and a missense mutation in the HMG-box of SOX8. In vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analysed SOX8 in a cohort of infertile men (n = 274) and two independent cohorts of women with primary ovarian insufficiency (POI; n = 153 and n = 104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; P < 0.05) and POI (5.06%; P = 4.5 × 10-5) as compared with fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared with the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46, XY DSD, male infertility and 46, XX POI.

11.
J Med Genet ; 55(3): 205-213, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29223973

RESUMO

BACKGROUND: The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES: To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS: From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS: Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS: The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

12.
Am J Med Genet A ; 176(1): 151-155, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130637

RESUMO

A congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3.


Assuntos
Colina O-Acetiltransferase/genética , Deleção Cromossômica , Cromossomos Humanos Par 10 , Genes Recessivos , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Fenótipo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Sequência de Aminoácidos , Feminino , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
13.
Reprod Biomed Online ; 35(4): 372-378, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711302

RESUMO

Chromosomal translocations and other balanced rearrangements, although usually associated with a normal phenotype, can lead to the transmission of an abnormal unbalanced genome to the offspring. Balanced and unbalanced spermatozoa, being indistinguishable, cannot be selected or deselected for prior to IVF and pre-implantation genetic diagnosis. Spermatozoa from 16 chromosomal rearrangement carriers were studied. After incubation in a hypo-osmotic solution (hypo-osmotic swelling test, or HOST), spermatozoa were fixed on microscope slides. The chromosomally balanced or unbalanced status corresponding to each observed class of flagellar conformation was evaluated through fluorescent in-situ hybridization (FISH). We show here a specific type of spermatozoa, with a distinct flagellar conformation that was associated with a balanced genetic content. HOST is a simple, low-cost and time-honoured procedure initially developed to distinguish immotile viable from non-viable spermatozoa. We demonstrate that it can also be used to identify genetically balanced spermatozoa in chromosomal rearrangement carriers, with a 96% decrease in the proportion of unbalanced spermatozoa after selection. This may potentially improve reproductive prognosis in affected couples if used prior to pre-implantation genetic diagnosis (PGD), and clinical utility and efficacy should be evaluated in further studies.


Assuntos
Triagem de Portadores Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Espermatozoides/citologia , Translocação Genética/genética , Segregação de Cromossomos , Feminino , Fertilização In Vitro , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Osmose , Motilidade Espermática , Cauda do Espermatozoide/ultraestrutura
14.
J Pediatr ; 185: 160-166.e1, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284480

RESUMO

OBJECTIVE: To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. RESULTS: In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. CONCLUSIONS: Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability.


Assuntos
Agenesia do Corpo Caloso/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 7 , Cromossomos Humanos Par 8 , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
15.
Diabetes ; 66(6): 1470-1478, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28270520

RESUMO

Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties, including upregulation of thermogenic genes, increased mitochondrial content, and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of ß-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Técnicas de Reprogramação Celular/métodos , Glucose/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Resistência à Insulina , Obesidade , Termogênese/genética , Adipócitos Bege/citologia , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/transplante , Adipogenia , Tecido Adiposo/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Transplante de Células , Fluordesoxiglucose F18 , Perfilação da Expressão Gênica , Humanos , Isoproterenol/farmacologia , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Compostos Radiofarmacêuticos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
16.
Sex Dev ; 11(5-6): 293-297, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29332064

RESUMO

A heterozygous intragenic duplication within the repeated area (CTGCAGCTG)×2 of the NR5A1 gene was found in a 15-year-old 46,XY DSD (disorders/differences of sex development) patient with micropenis and severe proximal hypospadias. This heterozygous duplication has already been described twice in boys with a similar phenotype, whereas a deletion of 3 amino acids at the same position in the protein SF-1 has been described in a 46,XX patient with primary ovarian failure and short stature. These data suggest that this region within the NR5A1 gene has an important role for SF-1 protein function in gonads and is a hotspot for intragenic rearrangements.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Hipospadia/genética , Fator Esteroidogênico 1/genética , Adolescente , Heterozigoto , Humanos , Hipospadia/metabolismo , Masculino , Mutação/genética , Fator Esteroidogênico 1/metabolismo
17.
Biomed Res Int ; 2016: 6372171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148551

RESUMO

Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM) at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p < 10(-6)), OR = 2.4; and p < 0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.


Assuntos
Metilação de DNA/genética , Espermatozoides/citologia , Humanos , Masculino , Microscopia/métodos , Estudos Prospectivos
18.
Mol Autism ; 6: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844147

RESUMO

BACKGROUND: Apparently balanced chromosomal rearrangements can be associated with an abnormal phenotype, including intellectual disability and autism spectrum disorder (ASD). Genome-wide microarrays reveal cryptic genomic imbalances, related or not to the breakpoints, in 25% to 50% of patients with an abnormal phenotype carrying a microscopically balanced chromosomal rearrangement. Here we performed microarray analysis of 18 patients with ASD carrying balanced chromosomal abnormalities to identify submicroscopic imbalances implicated in abnormal neurodevelopment. METHODS: Eighteen patients with ASD carrying apparently balanced chromosomal abnormalities were screened using single nucleotide polymorphism (SNP) arrays. Nine rearrangements were de novo, seven inherited, and two of unknown inheritance. Genomic imbalances were confirmed by fluorescence in situ hybridization and quantitative PCR. RESULTS: We detected clinically significant de novo copy number variants in four patients (22%), including three with de novo rearrangements and one with an inherited abnormality. The sizes ranged from 3.3 to 4.9 Mb; three were related to the breakpoint regions and one occurred elsewhere. We report a patient with a duplication of the Wolf-Hirschhorn syndrome critical region, contributing to the delineation of this rare genomic disorder. The patient has a chromosome 4p inverted duplication deletion, with a 0.5 Mb deletion of terminal 4p and a 4.2 Mb duplication of 4p16.2p16.3. The other cases included an apparently balanced de novo translocation t(5;18)(q12;p11.2) with a 4.2 Mb deletion at the 18p breakpoint, a subject with de novo pericentric inversion inv(11)(p14q23.2) in whom the array revealed a de novo 4.9 Mb deletion in 7q21.3q22.1, and a patient with a maternal inv(2)(q14.2q37.3) with a de novo 3.3 Mb terminal 2q deletion and a 4.2 Mb duplication at the proximal breakpoint. In addition, we identified a rare de novo deletion of unknown significance on a chromosome unrelated to the initial rearrangement, disrupting a single gene, RFX3. CONCLUSIONS: These findings underscore the utility of SNP arrays for investigating apparently balanced chromosomal abnormalities in subjects with ASD or related neurodevelopmental disorders in both clinical and research settings.

19.
Am J Med Genet A ; 167A(8): 1851-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900885

RESUMO

Disorders of Sex Development (DSD) are a heterogeneous group of disorders affecting gonad and/or genito-urinary tract development and usually the endocrine-reproductive system. A genetic diagnosis is made in only around 20% of these cases. The genetic causes of 46,XX-SRY negative testicular DSD as well as ovotesticular DSD are poorly defined. Duplications involving a region located ∼600 kb upstream of SOX9, a key gene in testis development, were reported in several cases of 46,XX DSD. Recent studies have narrowed this region down to a 78 kb interval that is duplicated or deleted respectively in 46,XX or 46,XY DSD. We identified three phenotypically normal patients presenting with azoospermia and 46,XX testicular DSD. Two brothers carried a 83.8 kb duplication located ∼600 kb upstream of SOX9 that overlapped with the previously reported rearrangements. This duplication refines the minimal region associated with 46,XX-SRY negative DSD to a 40.7-41.9 kb element located ∼600 kb upstream of SOX9. Predicted enhancer elements and evolutionary-conserved binding sites for proteins known to be involved in testis determination are located within this region.


Assuntos
Aberrações Cromossômicas , Transtornos do Desenvolvimento Sexual/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Humanos , Masculino
20.
Eur J Med Genet ; 58(6-7): 341-5, 2015 Jun-Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917374

RESUMO

Xp21 continuous gene deletion syndrome is characterized by complex glycerol kinase deficiency (GK), adrenal hypoplasia congenital (NROB1), intellectual disability and/or Duchenne muscular dystrophy (DMD). The clinical features depend on the size of the deletion, as well as on the number and the nature of the encompassed genes. More than 100 male patients have been reported so far, while only a few cases of symptomatic female carriers have been described. We report here detailed clinical features and X chromosome inactivation analysis in two unrelated female patients with overlapping Xp21 deletions presenting with intellectual disability and inconstant muscular symptoms.


Assuntos
Insuficiência Adrenal/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Cromossomos Humanos X/genética , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glicerol Quinase/deficiência , Deficiência Intelectual/genética , Distrofia Muscular de Duchenne/genética , Insuficiência Adrenal/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Criança , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Glicerol Quinase/genética , Humanos , Hipoadrenocorticismo Familiar , Deficiência Intelectual/diagnóstico , Distrofia Muscular de Duchenne/diagnóstico , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA