Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 1): 28-35, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655465

RESUMO

In this work, the performance of thin silicon carbide membranes as material for radiation hard X-ray beam position monitors (XBPMs) is investigated. Thermal and electrical behavior of XBPMs made from thin silicon carbide membranes and single-crystal diamond is compared using finite-element simulations. Fabricated silicon carbide devices are also compared with a 12 µm commercial polycrystalline diamond XBPM at the Swiss Light Source at the Paul Scherrer Institute. Results show that silicon carbide devices can reach equivalent transparencies while showing improved linearity, dynamics and signal-to-noise ratio compared with commercial polycrystalline diamond XBPMs. Given the obtained results and availability of electronic-grade epitaxies on up to 6 inch wafers, it is expected that silicon carbide can substitute for diamond in most beam monitoring applications, whereas diamond, owing to its lower absorption, could remain the material of choice in cases of extreme X-ray power densities, such as pink and white beams.

2.
Adv Sci (Weinh) ; 5(6): 1700955, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938172

RESUMO

Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III-V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.

3.
Small ; 13(16)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160408

RESUMO

SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.6 µm. Temperature-dependent photoluminescence experiments indicate ternaries near the indirect-to-direct bandgap transition, proving their potential for ternary-based light emitters in the aforementioned optical range. The ternaries' layer relaxation is also monitored to explore their use as strain-relaxed buffers, since they are of interest not only for light emitting diodes investigated in this paper but also for many other optoelectronic and electronic applications. In particular, the authors have epitaxially grown a GeSn/SiGeSn multiquantum well heterostructure, which employs SiGeSn as barrier material to efficiently confine carriers in GeSn wells. Strong room temperature light emission from fabricated light emitting diodes proves the high potential of this heterostructure approach.

4.
Opt Express ; 24(5): 4552-4562, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092282

RESUMO

Generation of high intensity terahertz radiation in the low frequency region (f < 5 THz) is still a challenging task and only few experimental demonstrations exceeding 1 MV/cm have been reported so far. One viable option is the use of resonant metallic structures which act as amplifiers for the impinging radiation. Here with the aid of finite difference time domain simulations, we design and realize a set of isolated resonant elements which allow us to reach a 28-fold enhancement of freely propagating THz radiation at f ≈ 1 THz. These elements are deposited on a GaP sample allowing the direct measurement of the field enhancement using electro-optical sampling. Interestingly, we experimentally show strong modifications of the antennas resonance which is interpreted in terms of interference effects. These are particularly important in samples thinner than half the spatial pulse length.

5.
Photochem Photobiol Sci ; 13(10): 1393-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25179668

RESUMO

We report the dynamics of electrons injected into TiO2 due to the excitation of Ru-N719 dye at 532 nm. The synchrotron based broadband transient mid-IR spectroscopy revealed that the injected electrons are quickly confined to a trap state with an average energy of ca. 240 meV below the conduction band. The average energy of the trapping states did not change with the increase of the delay time, suggesting a singular electronic identity of the trap states.

6.
ACS Nano ; 8(4): 3700-6, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24617545

RESUMO

Double-layer plasmonic nanostructures are fabricated by depositing metal at normal incidence onto various resist masks, forming an antenna layer on top of the resist post and a hole layer on the substrate. Antenna plasmon resonances are found to couple to the hole layer, inducing image charges which enhance the near-field for small layer spacings. For continued evaporation above the resist height, a sub-10 nm gap channel develops due to a self-aligned process and a minimal undercut of the resist sidewall. For such double layers with nanogap channels, the average surface-enhanced Raman scattering intensity is improved by a factor in excess of 60 in comparison to a single-layer antenna with the same dimensions. The proposed design principle is compatible with low-cost fabrication, straightforward to implement, and applicable over large areas. Moreover, it can be applied for any particular antenna shape to improve the signals in surface-enhanced spectroscopy applications.

7.
J Synchrotron Radiat ; 21(Pt 1): 111-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365924

RESUMO

Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presented. By scanning regions of interest of several tens of micrometers at different rocking angles of the sample in the vicinity of two Bragg reflections, reciprocal space is effectively mapped in three dimensions at each scanning position, obtaining the bending, as well as the in-plane and out-of-plane strain components. Highly strained large-area Ge structures with applications in optoelectronics are used to demonstrate the potential of this technique and the results are compared with finite-element-method models for validation.

8.
Nano Lett ; 13(11): 5449-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24111580

RESUMO

Pairs of metal nanoparticles with a sub-10 nm gap are an efficient way to achieve extreme near-field enhancement for sensing applications. We demonstrate an attractive alternative based on Fabry-Perot type nanogap resonators, where the resonance is defined by the gap width and vertical elongation instead of the particle geometry. We discuss the crucial design parameters for such gap plasmons to produce maximum near-field enhancement for surface-enhanced Raman scattering and show compatibility of the pattern processing with low-cost and low-resolution lithography. We find a minimum critical metal thickness of 80 nm and observe that the mode coupling from the far field increases by tapering the gap opening. We also show the saturation of the Raman signal for nanogap periodicities below 1 µm, demonstrating efficient funneling of light into such nanogap arrays.

9.
Analyst ; 138(7): 1966-70, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23431560

RESUMO

The dynamics of TiO2 conduction band electrons were followed with a novel broadband synchrotron-based transient mid-IR spectroscopy setup. The lifetime of conduction band electrons was found to be dependent on the injection method used. Direct band gap excitation results in a lifetime of 2.5 ns, whereas indirect excitation at 532 nm via Ru-N719 dye followed by injection from the dye into TiO2 results in a lifetime of 5.9 ns.

10.
ACS Nano ; 7(3): 2751-7, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23432333

RESUMO

Adhesion layers, required to stabilize metallic nanostructures, dramatically deteriorate the performances of plasmonic sensors, by severely damping the plasmon modes. In this article, we show that these detrimental effects critically depend on the overlap of the electromagnetic near-field of the resonant plasmon mode with the adhesion layer and can be minimized by careful engineering of the latter. We study the dependence of the geometrical parameters such as layer thickness and shape on the near-field of localized plasmon resonances for traditional adhesion layers such as Cr, Ti, and TiO2. Our experiments and simulations reveal a strong dependence of the damping on the layer thickness, in agreement with the exponential decay of the plasmon near-field. We developed a method to minimize the damping by selective deposition of thin adhesion layers (<1 nm) in a manner that prevents the layer to overlap with the hotspots of the plasmonic structure. Such a designed structure enables the use of standard Cr and Ti adhesion materials to fabricate robust plasmonic sensors without deteriorating their sensitivity.

11.
Nano Lett ; 13(2): 497-503, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23273336

RESUMO

Plasmonic modes with long radiative lifetimes combine strong nanoscale light confinement with a narrow spectral line width carrying the signature of Fano resonances, making them very promising for nanophotonic applications such as sensing, lasing, and switching. Their coupling to incident radiation, also known as radiance, determines their optical properties and optimal use in applications. In this work, we theoretically and experimentally demonstrate that the radiance of a plasmonic mode can be classified into three different regimes. In the weak coupling regime, the line shape exhibits remarkable sensitivity to the dielectric environment. We show that geometrical displacements and deformations at the Ångström scale can be detected optically by measuring the radiance. In the intermediate regime, the electromagnetic energy stored in the mode is maximal, with large electric field enhancements that can be exploited in surface enhanced spectroscopy applications. In the strong coupling regime, the interaction can result in hybridized modes with tunable energies.


Assuntos
Luz , Nanoestruturas/química , Ressonância de Plasmônio de Superfície , Campos Eletromagnéticos , Estrutura Molecular , Espalhamento de Radiação
12.
Phys Rev Lett ; 109(5): 057402, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006206

RESUMO

Direct-gap gain up to 850 cm(-1) at 0.74 eV is measured and modeled in optically pumped Ge-on-Si layers for photoexcited carrier densities of 2.0 × 10(20) cm(-3). The gain spectra are correlated to carrier density via plasma-frequency determinations from reflection spectra. Despite significant gain, optical amplification cannot take place, because the carriers also generate pump-induced absorption of ≈7000 cm(-1). Parallel studies of III-V direct-gap InGaAs layers validate our spectroscopy and modeling. Our self-consistent results contradict current explanations of lasing in Ge-on-Si cavities.

13.
Chimia (Aarau) ; 65(5): 323-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21744685

RESUMO

In preparation for picosecond pump-probe experiments at the SwissFEL X-ray laser facility, the feasibility of collectively initiating surface chemical reactions using energetic pulses of terahertz radiation is being tested.


Assuntos
Radiação Terahertz , Catálise , Lasers , Propriedades de Superfície , Fatores de Tempo , Espectroscopia por Absorção de Raios X
14.
Rev Sci Instrum ; 82(6): 063101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721668

RESUMO

Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 µm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 µm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump-induced absorption and inversion processes present at the direct-gap energy.

15.
Rev Sci Instrum ; 81(10): 104702, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034105

RESUMO

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

16.
Nano Lett ; 7(10): 3150-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17892317

RESUMO

Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of lambda = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 x 10(7) dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (+/-10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.


Assuntos
Cristalização/métodos , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Pontos Quânticos , Silício/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
Opt Express ; 14(6): 2323-34, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503570

RESUMO

We have fabricated, characterized and theoretically analyzed the performance of bilayer (or stacked) metallic wire-grids. The samples with 100 nm period were fabricated with extreme-ultraviolet interference lithography. Transmission efficiency over 50% and extinction ratios higher than 40 dB were measured in the visible range with these devices. Simulations using a finite-difference time-domain algorithm are in agreement with the experimental results and show that the transmission spectra are governed by Fabry-Perot interference and nearfield coupling between the two layers of the structure. The simple fabrication method involves only a single lithographic step without any etching and guarantees precise alignment and separation of the two wire-grids with respect to each other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA