Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 40(1): 228, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253243

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). METHODS: In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. RESULTS: Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. CONCLUSIONS: Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.

2.
Cell Death Dis ; 12(7): 636, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155195

RESUMO

Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-ß5, Survivin, TGF-ß, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/sangue , Neoplasias da Próstata/sangue , Proteoma , Proteômica , Adulto , Idoso , Linhagem Celular Tumoral , Vesículas Extracelulares/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Neoplasias da Próstata/ultraestrutura , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Cell Death Differ ; 28(7): 2060-2082, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33531658

RESUMO

Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51. First, we demonstrated that PARP1 is upregulated in CRC-SCs resistant to several replication poisons and RSR inhibitors (RSRi). In these cells, PARP1 modulates replication fork speed resulting in low constitutive RS. Second, we showed that MRE11 and RAD51 cooperate in the genoprotection and mitosis execution of PARP1-upregulated CRC-SCs. These roles represent therapeutic vulnerabilities for CSCs. Indeed, PARP1i sensitized CRC-SCs to ATRi/CHK1i, inducing replication catastrophe, and prevented the development of resistance to CHK1i. Also, MRE11i + RAD51i selectively killed PARP1-upregulated CRC-SCs via mitotic catastrophe. These results provide the rationale for biomarker-driven clinical trials in CRC using distinct RSRi combinations.

4.
Gut ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436496

RESUMO

OBJECTIVE: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.

5.
Neuro Oncol ; 22(12): 1771-1784, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459347

RESUMO

BACKGROUND: Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis. METHODS: Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene expression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the maternally expressed 3 gene (MEG3). RESULTS: Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan-Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT). CONCLUSION: In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, thus providing a potential candidate for novel GBM therapies.


Assuntos
Glioblastoma , RNA Longo não Codificante , Adulto , Proteínas de Ligação ao Cálcio , Proliferação de Células , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Impressão Genômica , Glioblastoma/genética , Humanos , Proteínas de Membrana/genética , RNA Longo não Codificante/genética
6.
J Exp Clin Cancer Res ; 39(1): 2, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910865

RESUMO

BACKGROUND: Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. METHODS: A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. RESULTS: Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. CONCLUSIONS: These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.


Assuntos
Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Oxaliplatina/farmacologia , Prognóstico
7.
Cell Death Dis ; 10(7): 529, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31332161

RESUMO

Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells. A global profiling of pathways activated by nanofenretinide was performed by reverse-phase proteomic arrays and lipid analysis, revealing widespread repression of the mTOR pathway, activation of apoptotic, autophagic and DNA damage signals and massive production of dihydroceramide, a bioactive lipid with pleiotropic effects on several biological processes. In cells that survived nanofenretinide treatment there was a decrease of factors involved in cell cycle progression and an increase in the levels of p16 and phosphorylated p38 MAPK with consequent block in G0 and early G1. The capacity of nanofenretinide to induce cancer cell death and quiescence, together with its elevated bioavailability and broad antitumor activity indicate its potential use in cancer treatment and chemoprevention.


Assuntos
Antineoplásicos/uso terapêutico , Fenretinida/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Exp Clin Cancer Res ; 38(1): 202, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101126

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM), due to its location, aggressiveness, heterogeneity and infiltrative growth, is characterized by an exceptionally dismal clinical outcome. The small molecule SI113, recently identified as a SGK1 inhibitor, has proven to be effective in restraining GBM growth in vitro and in vivo, showing also encouraging results when employed in combination with other antineoplastic drugs or radiotherapy. Our aim was to explore the pharmacological features of SI113 in GBM cells in order to elucidate the pivotal molecular pathways affected by the drug. Such knowledge would be of invaluable help in conceiving a rational offensive toward GBM. METHODS: We employed GBM cell lines, either established or primary (neurospheres), and used a Reverse-Phase Protein Arrays (RPPA) platform to assess the effect of SI113 upon 114 protein factors whose post-translational modifications are associated with activation or repression of specific signal transduction cascades. RESULTS: SI113 strongly affected the PI3K/mTOR pathway, evoking a pro-survival autophagic response in neurospheres. These results suggested the use of SI113 coupled, for maximum efficiency, with autophagy inhibitors. Indeed, the association of SI113 with an autophagy inhibitor, the antimalarial drug quinacrine, induced a strong synergistic effect in inhibiting GBM growth properties in all the cells tested, including neurospheres. CONCLUSIONS: RPPA clearly identified the molecular pathways influenced by SI113 in GBM cells, highlighting their vulnerability when the drug was administered in association with autophagy inhibitors, providing a strong molecular rationale for testing SI113 in clinical trials in associative GBM therapy.


Assuntos
Autofagia/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinacrina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
Cell Death Dis ; 10(3): 201, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814510

RESUMO

The pressure towards innovation and creation of new model systems in regenerative medicine and cancer research has fostered the development of novel potential therapeutic applications. Kidney injuries provoke a high request of organ transplants making it the most demanding system in the field of regenerative medicine. Furthermore, renal cancer frequently threaten patients' life and aggressive forms still remain difficult to treat. Ethical issues related to the use of embryonic stem cells, has fueled research on adult, patient-specific pluripotent stem cells as a model for discovery and therapeutic development, but to date, normal and cancerous renal experimental models are lacking. Several research groups are focusing on the development of organoid cultures. Since organoids mimic the original tissue architecture in vitro, they represent an excellent model for tissue engineering studies and cancer therapy testing. We established normal and tumor renal cell carcinoma organoids previously maintained in a heterogeneous multi-clone stem cell-like enriching medium. Starting from adult normal kidney specimens, we were able to isolate and propagate organoid 3D-structures composed of both differentiated and undifferentiated cells while expressing nephron specific markers. Furthermore, we were capable to establish organoids derived from cancer tissues although with a success rate inferior to that of their normal counterpart. Cancer cultures displayed epithelial and mesenchymal phenotype while retaining tumor specific markers. Of note, tumor organoids recapitulated neoplastic masses when orthotopically injected into immunocompromised mice. Our data suggest an innovative approach of long-term establishment of normal- and cancer-derived renal organoids obtained from cultures of fleshly dissociated adult tissues. Our results pave the way to organ replacement pioneering strategies as well as to new models for studying drug-induced nephrotoxicity and renal diseases. Along similar lines, deriving organoids from renal cancer patients opens unprecedented opportunities for generation of preclinical models aimed at improving therapeutic treatments.


Assuntos
Rim/patologia , Organoides/metabolismo , Medicina de Precisão/métodos , Medicina Regenerativa/métodos , Insuficiência Renal Crônica/terapia , Humanos , Insuficiência Renal Crônica/patologia
10.
J Exp Clin Cancer Res ; 37(1): 217, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185225

RESUMO

BACKGROUND: Clear cell RCC (ccRCC) accounts for approximately 75% of the renal cancer cases. Surgery treatment seems to be the best efficacious approach for the majority of patients. However, a consistent fraction (30%) of cases progress after surgery with curative intent. It is currently largely debated the use of adjuvant therapy for high-risk patients and the clinical and molecular parameters for stratifying beneficiary categories. In addition, the treatment of advanced forms lacks reliable driver biomarkers for the appropriated therapeutic choice. Thus, renal cancer patient management urges predictive molecular indicators and models for therapy-decision making. METHODS: Here, we developed and optimized new models and tools for ameliorating renal cancer patient management. We isolated from fresh tumor specimens heterogeneous multi-clonal populations showing epithelial and mesenchymal characteristics coupled to stem cell phenotype. These cells retained long lasting-tumor-propagating capacity provided a therapy monitoring approach in vitro and in vivo while being able to form parental tumors when orthotopically injected and serially transplanted in immunocompromised murine hosts. RESULTS: In line with recent evidence of multiclonal cancer composition, we optimized in vitro cultures enriched of multiple tumor-propagating populations. Orthotopic xenograft masses recapitulated morphology, grading and malignancy of parental cancers. High-grade but not the low-grade neoplasias, resulted in efficient serial transplantation in mice. Engraftment capacity paralleled grading and recurrence frequency advocating for a prognostic value of our developed model system. Therefore, in search of novel molecular indicators for therapy decision-making, we used Reverse-Phase Protein Arrays (RPPA) to analyze a panel of total and phosphorylated proteins in the isolated populations. Tumor-propagating cells showed several deregulated kinase cascades associated with grading, including angiogenesis and m-TOR pathways. CONCLUSIONS: In the era of personalized therapy, the analysis of tumor propagating cells may help improve prediction of disease progression and therapy assignment. The possibility to test pharmacological response of ccRCC stem-like cells in vitro and in orthotopic models may help define a pharmacological profiling for future development of more effective therapies. Likewise, RPPA screening on patient-derived populations offers innovative approach for possible prediction of therapy response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Renais/genética , Recidiva Local de Neoplasia/genética , Medicina de Precisão , Animais , Linhagem da Célula/genética , Modelos Animais de Doenças , Humanos , Neoplasias Renais/patologia , Camundongos , Recidiva Local de Neoplasia/patologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652798

RESUMO

In recent years many articles have underlined the key role of nanovesicles, i.e., exosomes, as information carriers among biological systems including cancer. Tumor-derived exosomes (TEXs) are key players in the dynamic crosstalk between cancer cells and the microenvironment while promote immune system control evasion. In fact, tumors are undoubtedly capable of silencing the immune response through multiple mechanisms, including the release of exosomes. TEXs have been shown to boost tumor growth and promote progression and metastatic spreading via suppression or stimulation of the immune response towards cancer cells. The advantage of immunotherapeutic treatment alone over combining immuno- and conventional therapy is currently debated. Understanding the role of tumor exosome-cargo is of crucial importance for our full comprehension of neoplastic immonosuppression and for the construction of novel therapies and vaccines based on (nano-) vesicles. Furthermore, to devise new anti-cancer approaches, diverse groups investigated the possibility of engineering TEXs by conditioning cancer cells’ own cargo. In this review, we summarize the state of art of TEX-based immunomodulation with a particular focus on the molecular function of non-coding family genes, microRNAs. Finally, we will report on recent efforts in the study of potential applications of engineered exosomes in cancer immunotherapy.


Assuntos
Exossomos/genética , Imunoterapia/métodos , MicroRNAs/genética , Neoplasias/terapia , Vacinas Anticâncer/uso terapêutico , Humanos , Nanopartículas/uso terapêutico , Neoplasias/genética , Microambiente Tumoral
12.
Gut ; 67(5): 903-917, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28389531

RESUMO

OBJECTIVE: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. DESIGN: To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. RESULTS: The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. CONCLUSIONS: LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirazinas/farmacologia , Pirazóis/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Neoplasias Colorretais/genética , Replicação do DNA/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Mutação , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Supressora de Tumor p53/genética
13.
Regen Med Res ; 5: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206625

RESUMO

MiR-204 and 211 enforced expression in murine mesenchymal stromal cells (MSCs) has been shown to induce adipogenesis and impair osteogenesis, through RUNX2 down-modulation. This mechanism has been suggested to play a role in osteoporosis associated with obesity. However, two further fundamental MSC functions, chondrogenesis and hematopoietic supporting activity, have not yet been explored. To this end, we transduced, by a lenti-viral vector, miR-204 and 211 in a model primary human MSC line, opportunely chosen among our MSC collection for displaying all properties of canonical bone marrow MSCs, except adipogenesis. Enforced expression of miR-204&211 in these cells, rescued adipogenesis, and inhibited osteogenesis, as previously reported in murine MSCs, but, surprisingly, also damaged cartilage formation and hematopoietic supporting activity, which were never explored before. RUNX2 has been previously indicated as the target of miR-204&211, whose down modulation is responsible for the switch from osteogenesis to adipogenesis. However, the additional disruption of chondrogenesis and hematopoietic supporting activity, which we report here, might depend on diverse miR-204&211 targets. To investigate this hypothesis, permanent RUNX2 knock-down was performed. Sh-RUNX2 fully reproduced the phenotypes induced by miR-204&211, confirming that RUNX2 down modulation is the major event leading to the reported functional modification on our MSCs. It seems thus apparent that RUNX2, a recognized master gene for osteogenesis, might rule all four MSC commitment and differentiation processes. Hence, the formerly reported role of miR204&211 and RUNX2 in osteoporosis and obesity, coupled with our novel observation showing inhibition of cartilage differentiation and hematopoietic support, strikingly resemble the clinical traits of metabolic syndrome, where osteoarthritis, osteoporosis, anaemia and obesity occur together. Our observations, corroborating and extending previous observations, suggest that miR-204&211-RUNX2 axis in human MSCs is possibly involved in the pathogenesis of this rapidly growing disease in industrialized countries, for possible therapeutic intervention to regenerate former homeostasis.

14.
J Exp Clin Cancer Res ; 36(1): 169, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29179732

RESUMO

BACKGROUND: Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide. MAIN BODY: Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types. SHORT CONCLUSION: The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Relação Estrutura-Atividade
15.
Cell Stem Cell ; 21(1): 35-50.e9, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602620

RESUMO

Functionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens. Analyses of mRNA profiles in comprehensive datasets revealed that high ITGA7 expression negatively correlated with survival of patients with both low- and high-grade glioma. In vitro and in vivo analyses showed that ITGA7 plays a key functional role in growth and invasiveness of GSCs. We also found that targeting of ITGA7 by RNAi or blocking mAbs impaired laminin-induced signaling, and it led to a significant delay in tumor engraftment plus a strong reduction in tumor size and invasion. Our data, therefore, highlight ITGA7 as a glioblastoma biomarker and candidate therapeutic target.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Cadeias alfa de Integrinas/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HeLa , Humanos , Cadeias alfa de Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 8(28): 46177-46190, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28526811

RESUMO

Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.


Assuntos
Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Proteínas do Líquido Cefalorraquidiano/metabolismo , Carcinomatose Meníngea/metabolismo , Proteoma/metabolismo , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Conjuntos de Dados como Assunto , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Nanotecnologia , Adulto Jovem
17.
Methods Mol Biol ; 1606: 51-70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28501993

RESUMO

Validation of antibodies is an integral part of translational research, particularly for biomarker discovery. Assaying the specificity of the reagent (antibody) and confirming the identity of the protein biomarker is of critical importance prior to implementing any biomarker in clinical studies, and the lack of such quality control tests may result in unexpected and/or misleading results.Antibody validation is the procedure in which a single antibody is thoroughly assayed for sensitivity and specificity. Although a plethora of commercial antibodies exist, antibody specificity must be extensively demonstrated using diverse complex biological samples, rather than purified recombinant proteins, prior to use in clinical translational research. In the simplest iteration, antibody specificity is determined by the presence of a single band in a complex biological sample, at the expected molecular weight, on a Western blot.To date, numerous Western blotting procedures are available, based on either manual or automated systems and spanning the spectrum of single blots to multiplex blots. X-ray film is still employed in many research laboratories, but digital imaging has become a gold standard in immunoblotting. The basic principles of Western blotting are (a) separation of protein mixtures by gel electrophoresis, (b) transfer of the proteins to a blot, (c) probing the blot for a protein or proteins of interest, and (d) subsequent detection of the protein by chemiluminescent, fluorescent, or colorimetric methods. This chapter focuses on the chemiluminescent detection of proteins using a manual Western blotting system and a vacuum-enhanced detection system (SNAP i.d.™, Millipore).


Assuntos
Especificidade de Anticorpos , Western Blotting/métodos , Animais , Humanos
18.
Stem Cells Int ; 2017: 8482326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337224

RESUMO

Mesenchymal stromal cells (MSCs), first found in bone marrow (BM), are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal) or interspersed within intestinal submucosa (intercryptal). In Crohn's disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC). The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ) is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn's disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer.

19.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216608

RESUMO

We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA) or reverse-phase protein array (RPPA), were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012). The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5), signal transducer and activator of transcription 3 (STAT3), bone morphogenetic protein 6 (BMP6), cluster of differentiation 74 (CD74), transferrin receptor (TFRC), inhibin alpha (INHA), and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88), CD74, iron exporter ferroportin (FPN), high mobility group box 1 (HMGB1), STAT3_pS727, TFRC, ferritin heavy chain (FTH), and ferritin light chain (FTL). Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Ferro/metabolismo , Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Neoplasias da Mama/genética , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática , Eritropoetina/sangue , Feminino , Ferritinas/metabolismo , Hepcidinas/metabolismo , Humanos , Interleucina-6/sangue , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteínas/genética , Receptores da Transferrina/metabolismo , Adulto Jovem
20.
Neuro Oncol ; 19(8): 1097-1108, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204560

RESUMO

Background: Advances from glioma stemlike cell (GSC) research, though increasing our knowledge of glioblastoma (GBM) biology, do not influence clinical decisions yet. We explored the translational power of GSC-enriched cultures from patient-derived tumorspheres (TS) in predicting treatment response. Methods: The relationship between TS growth and clinical outcome was investigated in 52 GBMs treated with surgical resection followed by radiotherapy and temozolomide (TMZ). The effect on TS of radiation (6 to 60 Gy) and of TMZ (3.9 µM to 1 mM) was related with patients' survival. Results: Generation of TS was an independent factor for poor overall survival (OS) and poor progression-free survival (PFS) (P < .0001 and P = .0010, respectively). Growth rate and clonogenicity of TS predicted poor OS. In general, TS were highly resistant to both radiation and TMZ. Resistance to TMZ was stronger in TS with high clonogenicity and fast growth (P < .02). Shorter PFS was associated with radiation LD50 (lethal dose required to kill 50% of TS cells) >12 Gy of matched TS (P = .0484). A direct relationship was found between sensitivity of TS to TMZ and patients' survival (P = .0167 and P = .0436 for OS and PFS, respectively). Importantly, values for TMZ half-maximal inhibitory concentration <50 µM, which are in the range of plasma levels achieved in vivo, identified cases with longer OS and PFS (P = .0020 and P = .0016, respectively). Conclusions: Analysis of TS holds translational relevance by predicting the response of parent tumors to radiation and, particularly, to TMZ. Dissecting the clonogenic population from proliferating progeny in TS can guide therapeutic strategies to a more effective drug selection and treatment duration.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Quimiorradioterapia/métodos , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...