Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 65: 46-52, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31430586

RESUMO

AIM: Ultrasound-based repositioning and real-time-monitoring aim at the improvement of the precision of SBRT in deep inspiration breath-hold (DIBH). Accuracy of ultrasound-based daily repositioning was estimated by comparison with DIBH-cone-beam-CT. Intrafraction motion during beam-delivery was assessed by ultrasound-real-time-monitoring. PATIENTS/METHODS: Residual error after ultrasound-based interfractional repositioning (85 fractions, 16 SBRT-series; 14 patients) was assessed by marker-based (7 series) or liver-contour-based (9 series) matching in DIBH-CBCT. During beam-delivery, the percentage of 3D misalignment vector below 2 mm, between 2 and 5 mm, 5-7 mm and over 7 mm was estimated. Percentage of relevant target-displacements was analyzed as a function of DIBH-duration. RESULTS: Residual error after ultrasound-based positioning was 0.4 ±â€¯3.3 mm in LR (left-right), 0.2 ±â€¯4.3 mm in CC (cranio-caudal) and 1.0 ±â€¯3.0 mm in AP (anterior-posterior) directions (vector magnitude 5.4 ±â€¯3.3 mm, MV ±â€¯SD). Over 544 DIBHs, target displacement was 1.3 ±â€¯0.5 mm, 0.7 ±â€¯0.3 mm, 1.6 ±â€¯0.6 mm for CC, LR and AP directions, respectively (3D-vector 2.5 ±â€¯0.7 mm). 3D misalignment vector length was below 2 mm in 49.8%, between 2 and 7 mm in 46.3%, and over 7 mm in 3.9% of the beam-delivery-time. During the first 5 s of the DIBH, 3D-misalignment vector length was always below 10 mm. Percentage of target displacements over 10 mm was 0.2%, 0.5% and 0.8% for 10 s, 15 s and 20 s DIBH-duration. CONCLUSIONS: Ultrasound-based interfractional repositioning is an accurate method for daily localization of abdominal DIBH-SBRT targets. Residual motion is <7 mm in 96% of the beam-delivery-time. Deviations >10 mm occur rarely and can be avoided by gating the beam at a predefined threshold. Ideal DIBH-duration should not exceed 15 s.


Assuntos
Abdome/diagnóstico por imagem , Abdome/efeitos da radiação , Suspensão da Respiração , Posicionamento do Paciente/métodos , Doses de Radiação , Radiocirurgia/métodos , Cirurgia Assistida por Computador/métodos , Idoso , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Movimento , Fatores de Tempo , Ultrassonografia
2.
Radiother Oncol ; 129(3): 441-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033386

RESUMO

BACKGROUND AND PURPOSE: Craniocaudal motion during image-guided abdominal SBRT can be reduced by computer-controlled deep-inspiratory-breath-hold (DIBH). However, a residual motion can occur in the DIBH-phases which can only be detected with intrafractional real-time-monitoring. We assessed the intra-breath-hold residual motion of DIBH and compared residual motion of target structures during DIBH detected by ultrasound (US). US data were compared with residual motion of the diaphragm-dome (DD) detected in the DIBH-CBCT-projections. PATIENTS AND METHODS: US-based monitoring was performed with an experimental US-system simultaneously to DIBH-CBCT acquisition. A total of 706 DIBHs during SBRT-treatments of metastatic lesions (liver, spleen, adrenal) of various primaries were registered in 13 patients. Residual motion of the target structure was documented with US during each DIBH. Motion of the DD was determined by comparison to a reference phantom-scan taking the individual geometrical setting at a given projection angle into account. Residual motion data detected by US were correlated to those of the DD (DIBH-CBCT-projection). RESULTS: US-based monitoring could be performed in all cases and was well tolerated by all patients. Additional time for daily US-based setup required 8 ±â€¯4 min. 385 DIBHs of 706 could be analyzed. In 59% of all DIBHs, residual motion was below 2 mm. In 36%, residual motion of 2-5 mm and in 4% of 5-8 mm was observed. Only 1% of all DIBHs and 0.16% of all readings revealed a residual motion of >8 mm during DIBH. For DIBHs with a residual motion over 2 mm, 137 of 156 CBCT-to-US curves had a parallel residual motion and showed a statistical correlation. DISCUSSION AND CONCLUSION: Soft-tissue monitoring with ultrasound is a fast real-time method without additional radiation exposure. Computer-controlled DIBH has a residual motion of <5 mm in >95% which is in line with the published intra-breath-hold-precision. Larger intrafractional deviations can be avoided if the beam is stopped at an US-defined threshold.


Assuntos
Suspensão da Respiração , Diafragma/fisiologia , Tomografia Computadorizada de Feixe Cônico Espiral/métodos , Diafragma/diagnóstico por imagem , Humanos , Fígado/fisiologia , Movimento (Física) , Movimento/fisiologia , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Ultrassonografia
3.
Int J Radiat Oncol Biol Phys ; 101(1): 136-143, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29482869

RESUMO

PURPOSE/OBJECTIVE: To determine intrafraction prostate motion during volumetric modulated arc therapy (VMAT) using transperineal ultrasound (US) real-time tracking. METHODS AND MATERIALS: 770 US monitoring sessions in 38 prostate cancer patients' VMAT treatment series were retrospectively evaluated. Intrafraction motion assessment of the prostate was based on continuous position monitoring with a 4-dimensional US system along the 3 directions: left-right (LR), anterior-posterior (AP), and inferior-superior (SI). The overall mean values and standard deviations (SD) along with random and systematic errors were calculated. RESULTS: The mean duration of each monitoring session was 254 s. The mean (µ), the systematic error (Σ), and the random error (σ) of intrafraction prostate displacement were µ = (0.01, -0.08, 0.15) mm, Σ = (0.30, 0.34, 0.23) mm, and σ = (0.59, 0.73, 0.64) mm in the LR, AP and SI directions, respectively. The percentage of treatments for which prostate displacement was ≤2 mm was 97.01%, 92.24%, and 95.77% in the LR, AP, and SI directions, respectively. At 60 s, a vector length of prostate displacement >2 mm was present in 0.67% of the data. The percentage increased to 2.42%, 6.14%, and 9.35% at 120 s, 180 s, and 240 s, respectively. CONCLUSIONS: The magnitudes of intrafraction prostate motion along the SI and AP directions were comparable. On average, the smallest motion was in the LR direction and the largest in AP direction. Most of the prostate displacements were within a few millimeters. However, with increasing treatment time (eg, during hypofractionation), larger 3-dimensional prostate displacements up to 18.30 mm could be observed. Shortening treatment time can reduce the impact of intrafraction motion and potentially allows smaller safety margins.


Assuntos
Imageamento Tridimensional/métodos , Movimentos dos Órgãos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Radioterapia de Intensidade Modulada/métodos , Ultrassonografia de Intervenção/métodos , Idoso , Idoso de 80 Anos ou mais , Sistemas Computacionais , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Próstata/patologia , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Fatores de Tempo
4.
Z Med Phys ; 28(2): 134-141, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29030203

RESUMO

BACKGROUND AND PURPOSE: The novel MatriXXFFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. MATERIAL AND METHODS: The verification of the MatriXXFFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXXFFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. RESULTS: The MatriXXFFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXXFFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ(3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ(3%,3mm)=(99.1±1.1)%). CONCLUSIONS: The MatriXXFFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF.


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Calibragem , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/normas
5.
Strahlenther Onkol ; 193(3): 213-220, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27921121

RESUMO

BACKGROUND AND PURPOSE: To evaluate a novel four-dimensional (4D) ultrasound (US) tracking system for external beam radiotherapy of upper abdominal lesions under computer-controlled deep-inspiration breath-hold (DIBH). MATERIALS AND METHODS: The tracking accuracy of the research 4D US system was evaluated using two motion phantoms programmed with sinusoidal and breathing patterns to simulate free breathing and DIBH. Clinical performance was evaluated with five healthy volunteers. US datasets were acquired in computer-controlled DIBH with varying angular scanning angles. Tracked structures were renal pelvis (spherical structure) and portal/liver vein branches (non-spherical structure). An external marker was attached to the surface of both phantoms and volunteers as a secondary object to be tracked by an infrared camera for comparison. RESULTS: Phantom measurements showed increased accuracy of US tracking with decreasing scanning range/increasing scanning frequency. The probability of lost tracking was higher for small scanning ranges (43.09% for 10° and 13.54% for 20°).The tracking success rates in healthy volunteers during DIBH were 93.24 and 89.86% for renal pelvis and portal vein branches, respectively. There was a strong correlation between marker motion and US tracking for the majority of analyzed breath-holds: 84.06 and 88.41% of renal pelvis target results and 82.26 and 91.94% of liver vein target results in anteroposterior and superoinferior directions, respectively; Pearson's correlation coefficient was between 0.71 and 0.99. CONCLUSION: The US system showed a good tracking performance in 4D motion phantoms. The tracking capability of surrogate structures for upper abdominal lesions in DIBH fulfills clinical requirements. Further investigation in a larger cohort of patients is underway.


Assuntos
Suspensão da Respiração , Imageamento Tridimensional/instrumentação , Radioterapia Conformacional/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Ultrassonografia/instrumentação , Artefatos , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Radiat Oncol ; 10: 111, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957871

RESUMO

BACKGROUND: A knowledge-based radiation therapy (KBRT) treatment planning algorithm was recently developed. The purpose of this work is to investigate how plans that are generated with the objective KBRT approach compare to those that rely on the judgment of the experienced planner. METHODS: Thirty volumetric modulated arc therapy plans were randomly selected from a database of prostate plans that were generated by experienced planners (expert plans). The anatomical data (CT scan and delineation of organs) of these patients and the KBRT algorithm were given to a novice with no prior treatment planning experience. The inexperienced planner used the knowledge-based algorithm to predict the dose that the OARs receive based on their proximity to the treated volume. The population-based OAR constraints were changed to the predicted doses. A KBRT plan was subsequently generated. The KBRT and expert plans were compared for the achieved target coverage and OAR sparing. The target coverages were compared using the Uniformity Index (UI), while 5 dose-volume points (D10, D30, D50, D70 and D90) were used to compare the OARs (bladder and rectum) doses. Wilcoxon matched-pairs signed rank test was used to check for significant differences (p<0.05) between both datasets. RESULTS: The KBRT and expert plans achieved mean UI values of 1.10 ± 0.03 and 1.10 ± 0.04, respectively. The Wilcoxon test showed no statistically significant difference between both results. The D90, D70, D50, D30 and D10 values of the two planning strategies, and the Wilcoxon test results suggests that the KBRT plans achieved a statistically significant lower bladder dose (at D30), while the expert plans achieved a statistically significant lower rectal dose (at D10 and D30). CONCLUSIONS: The results of this study show that the KBRT treatment planning approach is a promising method to objectively incorporate patient anatomical variations in radiotherapy treatment planning.


Assuntos
Algoritmos , Bases de Conhecimento , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Dosagem Radioterapêutica , Reto/efeitos da radiação , Tomografia Computadorizada por Raios X/métodos , Bexiga Urinária/efeitos da radiação
7.
Pract Radiat Oncol ; 5(3): 197-202, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25413396

RESUMO

PURPOSE: Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. METHODS AND MATERIALS: A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. RESULTS: Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. CONCLUSIONS: For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to the isocenter of the CT simulator and acquired with intermodal online coregistration directly at the planning CT is a fast and easy method to reliably delineate the prostate and target volumes and for daily IGRT.


Assuntos
Artroplastia de Quadril , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Idoso , Tomografia Computadorizada de Feixe Cônico , Humanos , Imageamento por Ressonância Magnética , Masculino , Ultrassonografia , Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...