Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4987, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404776

RESUMO

In Drosophila, direction-selective neurons implement a mechanism of motion computation similar to cortical neurons, using contrast-opponent receptive fields with ON and OFF subfields. It is not clear how the presynaptic circuitry of direction-selective neurons in the OFF pathway supports this computation if all major inputs are OFF-rectified neurons. Here, we reveal the biological substrate for motion computation in the OFF pathway. Three interneurons, Tm2, Tm9 and CT1, provide information about ON stimuli to the OFF direction-selective neuron T5 across its receptive field, supporting a contrast-opponent receptive field organization. Consistent with its prominent role in motion detection, variability in Tm9 receptive field properties transfers to T5, and calcium decrements in Tm9 in response to ON stimuli persist across behavioral states, while spatial tuning is sharpened by active behavior. Together, our work shows how a key neuronal computation is implemented by its constituent neuronal circuit elements to ensure direction selectivity.


Assuntos
Drosophila/metabolismo , Percepção de Movimento/fisiologia , Movimento (Física) , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Clorfenamidina , Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Interneurônios/metabolismo
2.
Mol Cell ; 81(16): 3356-3367.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34297910

RESUMO

RNA polymerase II (RNAP II) pausing is essential to precisely control gene expression and is critical for development of metazoans. Here, we show that the m6A RNA modification regulates promoter-proximal RNAP II pausing in Drosophila cells. The m6A methyltransferase complex (MTC) and the nuclear reader Ythdc1 are recruited to gene promoters. Depleting the m6A MTC leads to a decrease in RNAP II pause release and in Ser2P occupancy on the gene body and affects nascent RNA transcription. Tethering Mettl3 to a heterologous gene promoter is sufficient to increase RNAP II pause release, an effect that relies on its m6A catalytic domain. Collectively, our data reveal an important link between RNAP II pausing and the m6A RNA modification, thus adding another layer to m6A-mediated gene regulation.


Assuntos
Proteínas de Drosophila/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , Transcrição Genética , Animais , Drosophila melanogaster/genética , Metiltransferases/genética , Regiões Promotoras Genéticas/genética
3.
Cell Tissue Res ; 383(1): 125-141, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404843

RESUMO

The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.


Assuntos
Odorantes , Condutos Olfatórios/fisiologia , Animais
4.
Curr Biol ; 30(4): 657-669.e4, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008904

RESUMO

Visual perception scales with changes in the visual stimulus, or contrast, irrespective of background illumination. However, visual perception is challenged when adaptation is not fast enough to deal with sudden declines in overall illumination, for example, when gaze follows a moving object from bright sunlight into a shaded area. Here, we show that the visual system of the fly employs a solution by propagating a corrective luminance-sensitive signal. We use in vivo 2-photon imaging and behavioral analyses to demonstrate that distinct OFF-pathway inputs encode contrast and luminance. Predictions of contrast-sensitive neuronal responses show that contrast information alone cannot explain behavioral responses in sudden dim light. The luminance-sensitive pathway via the L3 neuron is required for visual processing in such rapidly changing light conditions, ensuring contrast constancy when pure contrast sensitivity underestimates a stimulus. Thus, retaining a peripheral feature, luminance, in visual processing is required for robust behavioral responses.


Assuntos
Drosophila melanogaster/fisiologia , Percepção Visual/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa
5.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31862845

RESUMO

The development of tissues and organs requires close interaction of cells. To achieve this, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila ortholog Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms, we have conducted a comprehensive genetic analysis of F as2 We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated F as2 mutants expressing only single isoforms. In contrast to the null mutation, which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type-specific rescue experiments showed that glial-secreted Fas2 can rescue the F as2 mutant phenotype to viability. This demonstrates that cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data suggest novel mechanistic aspects of a long-studied adhesion protein.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Movimento Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Mutação/genética , Neuroglia/metabolismo , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Traqueia/embriologia , Traqueia/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31823004

RESUMO

The computational organization of sensory systems depends on the diversification of individual cell types with distinct signal-processing capabilities. The Drosophila visual system, for instance, splits information into channels with different temporal properties directly downstream of photoreceptors in the first-order interneurons of the OFF pathway, L2 and L3. However, the biophysical mechanisms that determine this specialization are largely unknown. Here, we show that the voltage-gated Ka channels Shaker and Shal contribute to the response properties of the major OFF pathway input L2. L3 calcium response kinetics postsynaptic to photoreceptors resemble the sustained calcium signals of photoreceptors, whereas L2 neurons decay transiently. Based on a cell-type-specific RNA-seq data set and endogenous protein tagging, we identified Shaker and Shal as the primary candidates to shape L2 responses. Using in vivo two-photon imaging of L2 calcium signals in combination with pharmacological and genetic perturbations of these Ka channels, we show that the wild-type Shaker and Shal function is to enhance L2 responses and cell-autonomously sharpen L2 kinetics. Our results reveal a role for Ka channels in determining the signal-processing characteristics of a specific cell type in the visual system.

7.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535971

RESUMO

Sensory systems sequentially extract increasingly complex features. ON and OFF pathways, for example, encode increases or decreases of a stimulus from a common input. This ON/OFF pathway split is thought to occur at individual synaptic connections through a sign-inverting synapse in one of the pathways. Here, we show that ON selectivity is a multisynaptic process in the Drosophila visual system. A pharmacogenetics approach demonstrates that both glutamatergic inhibition through GluClα and GABAergic inhibition through Rdl mediate ON responses. Although neurons postsynaptic to the glutamatergic ON pathway input L1 lose all responses in GluClα mutants, they are resistant to a cell-type-specific loss of GluClα. This shows that ON selectivity is distributed across multiple synapses, and raises the possibility that cell-type-specific manipulations might reveal similar strategies in other sensory systems. Thus, sensory coding is more distributed than predicted by simple circuit motifs, allowing for robust neural processing.


Assuntos
Drosophila/fisiologia , Interneurônios/fisiologia , Vias Visuais/fisiologia , Percepção Visual , Animais , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , GABAérgicos/metabolismo , Modelos Neurológicos
8.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31331983

RESUMO

Chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) is a powerful technique to study transcriptional regulation. However, the requirement of millions of cells to generate results with high signal-to-noise ratio precludes it in the study of small cell populations. Here, we present a tagmentation-assisted fragmentation ChIP (TAF-ChIP) and sequencing method to generate high-quality histone profiles from low cell numbers. The data obtained from the TAF-ChIP approach are amenable to standard tools for ChIP-Seq analysis, owing to its high signal-to-noise ratio. The epigenetic profiles from TAF-ChIP approach showed high agreement with conventional ChIP-Seq datasets, thereby underlining the utility of this approach.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Drosophila/genética , Histonas/metabolismo , Animais , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Razão Sinal-Ruído , Software , Sequenciamento Completo do Genoma
9.
Nat Commun ; 9(1): 4729, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401872

RESUMO

The original version of this Article contained errors in Figs. 4 and 6. In Fig. 4, panel a, text labels UAS-FLP and LexAop2>stop>myr::smGdP-HA were shifted upwards during typesetting of the figure, and in Fig. 6, panel h, the number 15 was incorrectly placed on the heat map scale. These have now been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 9(1): 2232, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884811

RESUMO

Drosophila olfactory local interneurons (LNs) in the antennal lobe are highly diverse and variable. How and when distinct types of LNs emerge, differentiate, and integrate into the olfactory circuit is unknown. Through systematic developmental analyses, we found that LNs are recruited to the adult olfactory circuit in three groups. Group 1 LNs are residual larval LNs. Group 2 are adult-specific LNs that emerge before cognate sensory and projection neurons establish synaptic specificity, and Group 3 LNs emerge after synaptic specificity is established. Group 1 larval LNs are selectively reintegrated into the adult circuit through pruning and re-extension of processes to distinct regions of the antennal lobe, while others die during metamorphosis. Precise temporal control of this pruning and cell death shapes the global organization of the adult antennal lobe. Our findings provide a road map to understand how LNs develop and contribute to constructing the olfactory circuit.


Assuntos
Drosophila melanogaster/metabolismo , Interneurônios/metabolismo , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Animais Geneticamente Modificados , Antenas de Artrópodes/citologia , Antenas de Artrópodes/crescimento & desenvolvimento , Antenas de Artrópodes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Interneurônios/classificação , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microscopia Confocal , Modelos Neurológicos , Morfogênese , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/classificação , Transmissão Sináptica , Fatores de Tempo
11.
Elife ; 72018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29513217

RESUMO

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.


Assuntos
Proteínas de Drosophila/genética , Netrinas/genética , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Bulbo/crescimento & desenvolvimento , Bulbo/metabolismo , Rede Nervosa/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses/genética , Vias Visuais/crescimento & desenvolvimento
12.
Elife ; 72018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528286

RESUMO

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Nociceptores/fisiologia , Animais , Drosophila melanogaster/genética , Vias Eferentes/fisiologia , Reação de Fuga/fisiologia , Larva/fisiologia
13.
Development ; 144(24): 4673-4683, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084807

RESUMO

The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1-dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Olho/embriologia , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Dineínas do Citoplasma/metabolismo , Dineínas , Células Fotorreceptoras de Invertebrados/citologia
14.
Curr Biol ; 25(24): 3178-89, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26670999

RESUMO

Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing.


Assuntos
Interneurônios/fisiologia , Percepção de Movimento/fisiologia , Animais , Drosophila , Feminino
15.
Neuron ; 88(2): 390-402, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456048

RESUMO

Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing.


Assuntos
Percepção de Movimento/fisiologia , Orientação/fisiologia , Vias Visuais/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Drosophila , Feminino , Estimulação Luminosa/métodos
16.
Neuron ; 86(3): 711-25, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25892303

RESUMO

Neural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery.


Assuntos
Retroalimentação Fisiológica/fisiologia , Células Fotorreceptoras de Invertebrados/citologia , Terminações Pré-Sinápticas/fisiologia , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Canais Iônicos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Fenótipo , Fosfoproteínas/metabolismo , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/classificação , Células Fotorreceptoras de Invertebrados/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Transdução de Sinais/genética , Sinapses/fisiologia , Sinapses/ultraestrutura , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Annu Rev Neurosci ; 37: 307-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032498

RESUMO

Visual motion cues provide animals with critical information about their environment and guide a diverse array of behaviors. The neural circuits that carry out motion estimation provide a well-constrained model system for studying the logic of neural computation. Through a confluence of behavioral, physiological, and anatomical experiments, taking advantage of the powerful genetic tools available in the fruit fly Drosophila melanogaster, an outline of the neural pathways that compute visual motion has emerged. Here we describe these pathways, the evidence supporting them, and the challenges that remain in understanding the circuits and computations that link sensory inputs to behavior. Studies in flies and vertebrates have revealed a number of functional similarities between motion-processing pathways in different animals, despite profound differences in circuit anatomy and structure. The fact that different circuit mechanisms are used to achieve convergent computational outcomes sheds light on the evolution of the nervous system.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Evolução Biológica , Drosophila melanogaster/anatomia & histologia , Modelos Animais , Vias Neurais/fisiologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Vias Visuais/anatomia & histologia
18.
Curr Biol ; 24(10): R390-2, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24845666

RESUMO

How does the brain compare visual inputs over space and time to extract motion? Electron microscopic (EM) and molecular analyses reveal a new circuit architecture for motion processing in Drosophila. An offset in the weighting of synaptic connections and differential use of fast and slow nicotinic receptors suggests a mechanism that can implement spatiotemporal comparisons.


Assuntos
Drosophila melanogaster/fisiologia , Percepção de Movimento , Animais
19.
Nat Neurosci ; 17(2): 296-303, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390225

RESUMO

Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. We found that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extracted triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations was retained even as light and dark edge motion signals were combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This convergence argues that statistical structures in natural scenes have greatly affected visual processing, driving a common computational strategy over 500 million years of evolution.


Assuntos
Sensibilidades de Contraste/fisiologia , Modelos Neurológicos , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Drosophila , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Genótipo , Humanos , Estimulação Luminosa , Psicofísica
20.
Genetics ; 196(3): 615-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374352

RESUMO

Determining the genomic locations of transposable elements is a common experimental goal. When mapping large collections of transposon insertions, individualized amplification and sequencing is both time consuming and costly. We describe an approach in which large numbers of insertion lines can be simultaneously mapped in a single DNA sequencing reaction by using digital error-correcting codes to encode line identity in a unique set of barcoded pools.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Genômica/métodos , Animais , Mapeamento Cromossômico , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...