Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 28(29): 5884-5895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596793

RESUMO

This article presents a simplified view of integrins with emphasis on the α4 (α4ß1/VLA-4) integrin. Integrins are heterodimeric proteins expressed on the cell surface of leukocytes that participate in a wide variety of functions, such as survival, growth, differentiation, migration, inflammatory responses, tumour invasion, among others. When the extracellular matrix is degraded or deformed, cells are forced to undergo responsive changes that influence remodelling during physiological and pathological events. Integrins recognize these changes and trigger a series of cellular responses, forming a physical connection between the interior and the outside of the cell. The communication of integrins through the plasma membrane occurs in both directions, from the extracellular to the intracellular (outside-in) and from the intracellular to the extracellular (inside-out). Integrins are valid targets for antibodies and small-molecule antagonists. One example is the monoclonal antibody natalizumab, marketed under the name of TYSABRI®, used in the treatment of recurrent multiple sclerosis, which inhibits the adhesion of α4 integrin to its counter-receptor. α4ß1 Integrin antagonists are summarized here, and their utility as therapeutics are also discussed.


Assuntos
Integrina alfa4beta1 , Anticorpos Monoclonais , Adesão Celular , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Leucócitos
2.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164183

RESUMO

Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.


Assuntos
Receptores A2 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade
3.
Molecules ; 24(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416180

RESUMO

Leukemias are neoplasms that affect hematopoietic cells, which are developed by genetic alterations (mutations) that lead to the loss of proliferation control mechanisms (maturation and/or cell death). The α4ß1 integrin receptor is a therapeutic target for inflammation, autoimmune diseases and lymphoid tumors. This study was carried out to search through the antagonists-based virtual screening for α4ß1 receptor. Initially, seventeen (17) structures were selected (based on the inhibitory activity values, IC50) and the structure with the best value was chosen as the pivot. The pharmacophoric pattern was determined from the online PharmaGist server and resulted in a model of score value equal to 97.940 with 15 pharmacophoric characteristics that were statistically evaluated via Pearson correlations, principal component analysis (PCA) and hierarchical clustering analysis (HCA). A refined model generated four pharmacophoric hypotheses totaling 1.478 structures set of Zinc_database. After, the pharmacokinetic, toxicological and biological activity predictions were realized comparing with pivot structure that resulted in five (ZINC72088291, ZINC68842860, ZINC14365931, ZINC09588345 and ZINC91247798) structures with optimal in silico predictions. Therefore, future studies are needed to confirm antitumor potential activity of molecules selected this work with in vitro and in vivo assays.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Peptídeos/química , Peptídeos/farmacologia , Análise por Conglomerados , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 24(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991684

RESUMO

Inflammation is a complex reaction involving cellular and molecular components and an unspecific response to a specific aggression. The use of scientific and technological innovations as a research tool combining multidisciplinary knowledge in informatics, biotechnology, chemistry and biology are essential for optimizing time and reducing costs in the drug design. Thus, the integration of these in silico techniques makes it possible to search for new anti-inflammatory drugs with better pharmacokinetic and toxicological profiles compared to commercially used drugs. This in silico study evaluated the anti-inflammatory potential of two benzoylpropionic acid derivatives (MBPA and DHBPA) using molecular docking and their thermodynamic profiles by molecular dynamics, in addition to predicting oral bioavailability, bioactivity and toxicity. In accordance to our predictions the derivatives proposed here had the potential capacity for COX-2 inhibition in the human and mice enzyme, due to containing similar interactions with the control compound (ibuprofen). Ibuprofen showed toxic predictions of hepatotoxicity (in human, mouse and rat; toxicophoric group 2-arylacetic or 3-arylpropionic acid) and irritation of the gastrointestinal tract (in human, mouse and rat; toxicophoric group alpha-substituted propionic acid or ester) confirming the literature data, as well as the efficiency of the DEREK 10.0.2 program. Moreover, the proposed compounds are predicted to have a good oral bioavailability profile and low toxicity (LD50 < 700 mg/kg) and safety when compared to the commercial compound. Therefore, future studies are necessary to confirm the anti-inflammatory potential of these compounds.


Assuntos
Anti-Inflamatórios não Esteroides/química , Benzoatos/química , Simulação por Computador , Inibidores de Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/química , Ibuprofeno/química , Simulação de Acoplamento Molecular , Propionatos/química , Animais , Humanos , Camundongos , Ratos
5.
Molecules ; 23(2)2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29463017

RESUMO

The Protein Kinase Receptor type 2 (RIPK2) plays an important role in the pathogenesis of inflammatory diseases; it signals downstream of the NOD1 and NOD2 intracellular sensors and promotes a productive inflammatory response. However, excessive NOD2 signaling has been associated with various diseases, including sarcoidosis and inflammatory arthritis; the pharmacological inhibition of RIPK2 is an affinity strategy that demonstrates an increased expression of pro-inflammatory secretion activity. In this study, a pharmacophoric model based on the crystallographic pose of ponatinib, a potent RIPK2 inhibitor, and 30 other ones selected from the BindingDB repository database, was built. Compounds were selected based on the available ZINC compounds database and in silico predictions of their pharmacokinetic, toxicity and potential biological activity. Molecular docking was performed to identify the probable interactions of the compounds as well as their binding affinity with RIPK2. The compounds were analyzed to ponatinib and WEHI-345, which also used as a control. At least one of the compounds exhibited suitable pharmacokinetic properties, low toxicity and an interesting binding affinity and high fitness compared with the crystallographic pose of WEHI-345 in complex with RIPK2. This compound also possessed suitable synthetic accessibility, rendering it a potential and very promising RIPK2 inhibitor to be further investigated in regards to different diseases, particularly inflammatory ones.


Assuntos
Imidazóis/química , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Piridazinas/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Cristalografia por Raios X , Humanos , Imidazóis/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Transdução de Sinais/efeitos dos fármacos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...