Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
PLoS Comput Biol ; 17(10): e1009433, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634029

RESUMO

Most predictive models based on gene expression data do not leverage information related to gene splicing, despite the fact that splicing is a fundamental feature of eukaryotic gene expression. Cigarette smoking is an important environmental risk factor for many diseases, and it has profound effects on gene expression. Using smoking status as a prediction target, we developed deep neural network predictive models using gene, exon, and isoform level quantifications from RNA sequencing data in 2,557 subjects in the COPDGene Study. We observed that models using exon and isoform quantifications clearly outperformed gene-level models when using data from 5 genes from a previously published prediction model. Whereas the test set performance of the previously published model was 0.82 in the original publication, our exon-based models including an exon-to-isoform mapping layer achieved a test set AUC (area under the receiver operating characteristic) of 0.88, which improved to an AUC of 0.94 using exon quantifications from a larger set of genes. Isoform variability is an important source of latent information in RNA-seq data that can be used to improve clinical prediction models.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34536413

RESUMO

BACKGROUND: Total serum IgE (tIgE) is an important intermediate phenotype of allergic disease. Whole genome genetic association studies across ancestries may identify important determinants of IgE. OBJECTIVE: By leveraging data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) and the Atopic Dermatitis Research Network (ADRN), we aim to increase understanding of genetic variants affecting tIgE production across the ancestry and allergic disease spectrum (N=21,901). METHODS: We performed genome-wide association within strata of study, disease, and ancestry groups, and combined results via a meta-regression approach that models heterogeneity attributable to ancestry. We also tested for association between HLA alleles called from whole genome sequence data and tIgE, assessing replication of associations in HLA alleles called from genotype array data. For details, please see the Methods section in this article's Online Repository at www.jacionline.org. RESULTS: We identified six loci at genome-wide significance (P<5x10-9), including four loci previously reported as genome-wide significant for tIgE, as well as new regions in chr11q13.5 and chr15q22.2, also identified in prior GWAS of atopic dermatitis and asthma. In the HLA allele association study, HLA-A*02:01 was associated with decreased tIgE (discovery P = 2x10-4, replication P = 5x10-4, discovery+replication P=4x10-7) and HLA-DQB1*03:02 was strongly associated with decreased tIgE in Hispanic/Latino ancestry populations (Hispanic/Latino discovery+replication P=8x10-8). CONCLUSION: We performed the largest GWAS and HLA association study of tIgE focused on ancestrally diverse populations and found several known tIgE and allergic disease loci that are relevant in non-European ancestry populations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34523824

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD patients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung function. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome-wide association study approach. METHODS: Participants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In COPDGene, weight loss was defined as self-reported unintentional weight loss > 5% in the past year or low BMI (BMI < 20 kg/m2 ). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Stratified analyses were performed among African American (AA) and Non-Hispanic White (NHW) participants with COPD. Single variant and gene-based analyses were performed adjusting for confounders. Fine mapping was performed using a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Significant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle protein-protein interaction (PPI) data. RESULTS: At the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3-5.6, P = 3.2 × 10-8 ) among AA COPD participants in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014), whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the membrane-bound protein ephrin-A2 involved in the regulation of developmental processes and adult tissue homeostasis such as skeletal muscle. The BAIAP2 gene encodes the insulin-responsive protein of mass 53 kD (IRSp53), a negative regulator of myogenic differentiation. Integration of the gene-based findings participants with PPI data revealed networks of genes involved in pathways such as Rho and synapse signalling. CONCLUSIONS: The EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collectively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence skeletal muscle regeneration and tissue remodelling.

4.
Chest ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34592319

RESUMO

BACKGROUND: Emerging data from longitudinal studies suggest that PRISm, defined by proportionate reductions in FEV1 and FVC, is a heterogeneous population with frequent transitions to other lung function categories relative to individuals with normal and obstructive spirometry. Controversy regarding the clinical significance of these transitions exists (e.g., whether transitions merely reflect measurement variability or "noise"). RESEARCH QUESTION: Are individuals with PRISm enriched for transitions associated with substantial changes in lung function? STUDY DESIGN AND METHODS: Current and former smokers enrolled in COPDGene with spirometry available at Phases 1-3 (enrollment, 5-year, and 10-year follow-up) were analyzed. Post-bronchodilator lung function categories were: PRISm=FEV1<80% predicted with FEV1/FVC ratio≥0.7, GOLD0=FEV1≥80% predicted and FEV1/FVC ≥0.7, and obstruction=FEV1/FVC<0.7. "Significant-transition" status was affirmative if a subject belonged to ≥2 spirometric categories and had >10% change in FEV1% and/or FVC% predicted between consecutive visits. "Ever-PRISm" was present if a subject had PRISm at any visit. Logistic regression examined the association between "significant-transitions" and "ever-PRISm" status, adjusted for age, sex, race, FEV1% predicted, current smoking, pack-years, BMI, and ever-positive bronchodilator response. RESULTS: Among subjects with complete data (n=1,775) over 10.1±0.4 years of follow-up, the prevalence of PRISm remained consistent (10.4%-11.3%) between P1-P3, but nearly half of subjects with PRISm transitioned into or out of PRISm at each visit. 19.7% of subjects had a "significant transition"; "ever-PRISm" was a significant predictor of "significant transitions" (ORunadjusted=10.3, 95%CI=7.9-13.5, ORadjusted=14.9, 95%CI=10.9-20.7). Results were similar with additional adjustment for radiographic emphysema and gas trapping, when lower limit of normal criteria were used to define lung function categories, and when FEV1 alone (regardless of change in FVC%) was used to define "significant transitions" . INTERPRETATION: PRISm is an unstable group, with frequent significant transitions to both obstruction and normal spirometry over time.

5.
JCI Insight ; 6(17)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375314

RESUMO

Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and characterized by chronic inflammation in vulnerable individuals. However, it is unknown how genetic factors may shape chronic inflammation in COPD. To understand how hedgehog interacting protein, encoded by HHIP gene identified in the genome-wide association study in COPD, plays a role in inflammation, we utilized Hhip+/- mice that present persistent inflammation and emphysema upon aging similar to that observed in human COPD. By performing single-cell RNA sequencing of the whole lung from mice at different ages, we found that Hhip+/- mice developed a cytotoxic immune response with a specific increase in killer cell lectin-like receptor G1-positive CD8+ T cells with upregulated Ifnγ expression recapitulating human COPD. Hhip expression was restricted to a lung fibroblast subpopulation that had increased interaction with CD8+ T lymphocytes in Hhip+/- compared with Hhip+/+ during aging. Hhip-expressing lung fibroblasts had upregulated IL-18 pathway genes in Hhip+/- lung fibroblasts, which was sufficient to drive increased levels of IFN-γ in CD8+ T cells ex vivo. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.

6.
Hepatol Commun ; 5(8): 1348-1361, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430780

RESUMO

The serpin family A member 1 (SERPINA1) Z allele is present in approximately one in 25 individuals of European ancestry. Z allele homozygosity (Pi*ZZ) is the most common cause of alpha 1-antitrypsin deficiency and is a proven risk factor for cirrhosis. We examined whether heterozygous Z allele (Pi*Z) carriers in United Kingdom (UK) Biobank, a population-based cohort, are at increased risk of liver disease. We replicated findings in Massachusetts General Brigham Biobank, a hospital-based cohort. We also examined variants associated with liver disease and assessed for gene-gene and gene-environment interactions. In UK Biobank, we identified 1,493 cases of cirrhosis, 12,603 Z allele heterozygotes, and 129 Z allele homozygotes among 312,671 unrelated white British participants. Heterozygous carriage of the Z allele was associated with cirrhosis compared to noncarriage (odds ratio [OR], 1.53; P = 1.1×10-04); homozygosity of the Z allele also increased the risk of cirrhosis (OR, 11.8; P = 1.8 × 10-09). The OR for cirrhosis of the Z allele was comparable to that of well-established genetic variants, including patatin-like phospholipase domain containing 3 (PNPLA3) I148M (OR, 1.48; P = 1.1 × 10-22) and transmembrane 6 superfamily member 2 (TM6SF2) E167K (OR, 1.34; P = 2.6 × 10-06). In heterozygotes compared to noncarriers, the Z allele was associated with higher alanine aminotransferase (ALT; P = = 4.6 × 10-46), aspartate aminotransferase (AST; P = 2.2 × 10-27), alkaline phosphatase (P = 3.3 × 10-43), gamma-glutamyltransferase (P = 1.2 × 10-05), and total bilirubin (P = 6.4 × 10-06); Z allele homozygotes had even greater elevations in liver biochemistries. Body mass index (BMI) amplified the association of the Z allele for ALT (P interaction = 0.021) and AST (P interaction = 0.0040), suggesting a gene-environment interaction. Finally, we demonstrated genetic interactions between variants in PNPLA3, TM6SF2, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13); there was no evidence of epistasis between the Z allele and these variants. Conclusion: SERPINA1 Z allele heterozygosity is an important risk factor for liver disease; this risk is amplified by increasing BMI.

7.
Sci Rep ; 11(1): 16692, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404834

RESUMO

Emphysema is an important feature of chronic obstructive pulmonary disease (COPD). Genetic factors likely affect emphysema pathogenesis, but this question has predominantly been studied in those of European ancestry. In this study, we sought to determine genetic components of emphysema severity and characterize the potential function of the associated loci in Korean population. We performed a genome-wide association study (GWAS) on quantitative emphysema in subjects with or without COPD from two Korean COPD cohorts. We investigated the functional consequences of the loci using epigenetic annotation and gene expression data. We also compared our GWAS results with an epigenome-wide association study and previous differential gene expression analysis. In total, 548 subjects (476 [86.9%] male) including 514 COPD patients were evaluated. We identified one genome-wide significant SNP (P < 5.0 × 10-8), rs117084279, near PIBF1. We identified an additional 57 SNPs (P < 5.0 × 10-6) associated with emphysema in all subjects, and 106 SNPs (P < 5.0 × 10-6) in COPD patients. Of these candidate SNPs, 2 (rs12459249, rs11667314) near CYP2A6 were expression quantitative trait loci in lung tissue and a SNP (rs11214944) near NNMT was an expression quantitative trait locus in whole blood. Of note, rs11214944 was in linkage disequilibrium with variants in enhancer histone marks in lung tissue. Several genes near additional SNPs were identified in our previous EWAS study with nominal level of significance. We identified a novel SNP associated with quantitative emphysema on CT. Including the novel SNP, several candidate SNPs in our study may provide clues to the genetic etiology of emphysema in Asian populations. Further research and validation of the loci will help determine the genetic factors for the development of emphysema.

8.
Ann Am Thorac Soc ; 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461026

RESUMO

RATIONALE: The course of lung function, respiratory symptoms, and functional status over time in people who smoke cigarettes is still incompletely understood. The Genetic Epidemiology of COPD (COPDGene) study provides a unique cohort to examine these trajectories, and now 10 year follow-up data are available. OBJECTIVES: This study aims to provide insight into the progression of spirometric parameters, respiratory symptoms, and functional capacity over 10 years in current and former cigarette smokers. METHODS: We analyzed available longitudinal data for COPDGene participants who did not change smoking status over 3 visits spanning approximately 10 years of follow-up. Change in post-bronchodilator forced expiratory volume in one second (FEV1), St. George's Respiratory Questionnaire (SGRQ), and six-minute walk distance (6MWD) from Phase 1 to Phase 3 were examined using linear mixed models. Terms were included in the models to estimate mean progression separately for current and former cigarette smokers. Models were stratified by baseline GOLD spirometry stages as well as by new 2019 COPDGene Classification. RESULTS: Mean age at enrollment of the 9,103 participants in this analysis was 59.8 years (SD=9.2 years); 46.4% were women, and 32.6% were African American. In all GOLD COPD groups, including participants with normal spirometry, as well as all groups categorized by 2019 COPDGene Classification, FEV1 decreased, SGRQ increased (indicating higher symptom burden), and 6MWD decreased over the 10 year follow-up period. Current smokers exhibited a greater mean loss of FEV1 over the study period than former smokers for all groups except those with preserved ratio impaired spirometry (PRISm). For both SGRQ and 6MWD, rates of progression tended to be similar for former and current smokers except for 6MWD in the highest severity groups, where former smokers had greater progression. However, this could be impacted by some current smokers with faster progression that had quit smoking and were dropped from analyses. CONCLUSIONS: Progression in FEV1, SGRQ, and 6MWD overall appears to be slow, and the change over time in groups traditionally characterized as not having disease closely mirrors that of the groups with COPD at all GOLD stages. Current cigarette smokers had greater loss of FEV1 than former smokers, while SGRQ and 6MWD changes were more similar between current and former cigarette smokers.

9.
Hepatology ; 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34216018

RESUMO

Most of the genetic basis of chronic liver disease remains undiscovered. To identify novel genetic loci that modulate the risk of liver injury, we performed genome-wide association studies (GWAS) on circulating levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin across 312,671 White British participants in the UK Biobank. We focused on variants associated with elevations in all four liver biochemistries at genome-wide significance (P<5x10-8 ) and that replicated using Mass General Brigham Biobank in 19,323 European ancestry individuals. We identified a genetic locus in mitochondrial glycerol-3-phosphate acyltransferase (GPAM rs10787429) associated with increased levels of ALT (P=1.4x10-30 ), AST (P=3.6x10-10 ), ALP (P=9.5x10-30 ) and total bilirubin (P=2.9x10-12 ). This common genetic variant was also associated with an allele dose-dependent risk of alcoholic liver disease (OR 1.34, P=2.6x10-5 ) and fatty liver disease (OR 1.18, P=5.8x10-4 ) by ICD-10 codes. We identified significant interactions between GPAM rs10787429 and elevated body mass index in association with ALT and AST (P-interaction=7.1x10-9 and 3.95x10-8 , respectively), as well as between GPAM rs10787429 and weekly alcohol consumption in association with ALT, AST, and alcoholic liver disease (P-interaction=4.0x10-2 , 1.6x10-2 and 1.3x10-2 , respectively). Unlike previously described genetic variants that are associated with an increased risk of liver injury but confer a protective effect on circulating lipids, GPAM rs10787429 was associated with an increase in total cholesterol (P=2.0x10-17 ), LDL cholesterol (P=2.0x10-10 ), and HDL cholesterol (P=6.6x10-37 ). Single-cell RNA sequencing data demonstrated hepatocyte-predominant expression of GPAM in cells that co-express genes related to VLDL production (P=9.4x10-103 ). In conclusion, genetic variation in GPAM is associated with susceptibility to liver injury. GPAM may represent a new therapeutic target in chronic liver disease.

10.
BMC Pulm Med ; 21(1): 235, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261472

RESUMO

BACKGROUND: Secondary polycythemia is associated with cigarette smoking and chronic obstructive pulmonary disease (COPD). However, the prevalence of polycythemia in COPD and the contributing risk factors for polycythemia in COPD have not been extensively studied. METHODS: We analyzed the presence of secondary polycythemia in current and former smokers with moderate to very severe COPD at the five-year follow-up visit in the observational COPDGene study. We used logistic regression to evaluate the association of polycythemia with age, sex, race, altitude, current smoking status, spirometry, diffusing capacity for carbon monoxide (DLCO), quantitative chest CT measurements (including emphysema, airway wall thickness, and pulmonary artery to aorta diameter ratio), resting hypoxemia, exercise-induced hypoxemia, and long-term oxygen therapy. RESULTS: In a total of 1928 COPDGene participants with moderate to very severe COPD, secondary polycythemia was found in 97 (9.2%) male and 31 (3.5%) female participants. In a multivariable logistic model, severe resting hypoxemia (OR 3.50, 95% CI 1.41-8.66), impaired DLCO (OR 1.28 for each 10-percent decrease in DLCO % predicted, CI 1.09-1.49), male sex (OR 3.60, CI 2.20-5.90), non-Hispanic white race (OR 3.33, CI 1.71-6.50), current smoking (OR 2.55, CI 1.49-4.38), and enrollment in the Denver clinical center (OR 4.42, CI 2.38-8.21) were associated with higher risk for polycythemia. In addition, continuous (OR 0.13, CI 0.05-0.35) and nocturnal (OR 0.46, CI 0.21-0.97) supplemental oxygen were associated with lower risk for polycythemia. Results were similar after excluding participants with anemia and participants enrolled at the Denver clinical center. CONCLUSIONS: In a large cohort of individuals with moderate to very severe COPD, male sex, current smoking, enrollment at the Denver clinical center, impaired DLCO, and severe hypoxemia were associated with increased risk for secondary polycythemia. Continuous or nocturnal supplemental oxygen use were associated with decreased risk for polycythemia.

11.
Chest ; 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34237330

RESUMO

BACKGROUND: There are few clinically useful circulating biomarkers of lung function and lung disease. We hypothesized that genome-wide association studies (GWAS) of circulating proteins in conjunction with GWAS of pulmonary traits represents a clinically relevant approach to identifying causal proteins and therapeutically useful insights into mechanisms related to lung function and disease. STUDY QUESTION: Can an integrative genomic strategy using GWAS of plasma soluble receptor for advanced glycation end-products (sRAGE) levels in conjunction with GWAS of lung function traits identify putatively causal relations of sRAGE to lung function? STUDY DESIGN AND METHODS: Plasma sRAGE levels were measured in 6,861 Framingham Heart Study participants and GWAS of sRAGE was conducted to identify protein quantitative trait loci (pQTL), including cis-pQTL variants at the sRAGE protein-coding gene locus (AGER). We integrated sRAGE pQTL variants with variants from GWAS of lung traits. Colocalization of sRAGE pQTL variants with lung trait GWAS variants was conducted, and Mendelian randomization was performed using sRAGE cis-pQTL variants to infer causality of sRAGE for pulmonary traits. Cross-sectional and longitudinal protein-trait association analyses were conducted for sRAGE in relation to lung traits. RESULTS: Colocalization identified shared genetic signals for sRAGE with lung traits. Mendelian randomization analyses suggested protective causal relations of sRAGE to several pulmonary traits. Protein-trait association analyses demonstrated higher sRAGE levels to be cross-sectionally and longitudinally associated with preserved lung function. INTERPRETATION: sRAGE is produced by type I alveolar cells, and it acts as a decoy receptor to block the inflammatory cascade. Our integrative genomics approach provides evidence for sRAGE as a causal and protective biomarker of lung function, and the pattern of associations is suggestive of a protective role of sRAGE against restrictive lung physiology. We speculate that targeting the AGER/sRAGE axis may be therapeutically beneficial for the treatment and prevention of inflammation-related lung disease.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34166600

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a common, complex disease and a major cause of morbidity and mortality. Although multiple genetic determinants of COPD have been implicated by genome-wide association studies (GWAS), the pathophysiologic significance of these associations remains largely unknown. From a COPD protein-protein interaction network module, we selected a network path between two COPD GWAS genes for validation studies: FAM13A-AP3D1-CTGF-TGFB2. We find that TGFß2, FAM13A, and AP3D1 (but not CTGF) form a cellular protein complex. Functional characterization suggests that this complex mediates the secretion of TGFß2 through an AP-3-dependent pathway, with FAM13A acting as a negative regulator by targeting a late stage of this transport that involves the dissociation of coat-cargo interaction. Moreover, we find that TGFß2 is a transmembrane protein that engages the AP-3 complex for delivery to the late endosomal compartments for subsequent secretion through exosomes. These results identify a pathophysiologic context that unifies the biological network role of two COPD GWAS proteins and reveal novel mechanisms of cargo transport through an intracellular pathway.

13.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159627

RESUMO

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Brasil , Estudo de Associação Genômica Ampla , Humanos , Mutação , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
14.
Arthritis Rheumatol ; 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33982900

RESUMO

OBJECTIVE: To investigate the independent relationship of rheumatoid arthritis (RA) to the type and severity of pulmonary patterns on spirometry compared to the pulmonary patterns in general population controls. METHODS: In this cross-sectional study, we investigated the association of RA with pulmonary function measures on spirometry among subjects in the UK Biobank who underwent spirometry for research purposes. RA cases were identified based on self-report and current disease-modifying antirheumatic drug/glucocorticoid use. Controls were subjects without RA from the general population. Outcome measures included continuous forced expiratory volume in 1 second percent predicted (FEV1 %) and forced vital capacity percent predicted (FVC%), type of spirometric pattern (restrictive or obstructive), and severity of the restrictive or obstructive pattern. We used multivariable regression to estimate the effects in RA cases compared to the effects in controls, adjusting for age, sex, body mass index, and smoking status/pack-years. RESULTS: Among 350,776 analyzed subjects who underwent spirometry (mean age 56.3 years; 55.8% female; 45.5% ever smokers), we identified 2,008 cases of treated RA. In multivariable analyses, RA was associated with lower FEV1 % (ß = -2.93 [95% confidence interval (95% CI) -3.63, -2.24]), FVC% (ß = -2.08 [95% CI -2.72, -1.45]), and FEV1 /FVC (ß = -0.008 [95% CI -0.010, -0.005]) compared to controls. RA was additionally associated with restrictive patterns (odds ratio [OR] 1.36 [95% CI 1.21, 1.52]) and obstructive patterns (OR 1.21 [95% CI 1.07, 1.37]) independent of confounders, and was most strongly associated with severe restrictive and obstructive patterns. CONCLUSION: RA is associated with increased odds of restrictive and obstructive patterns, and this relationship is not explained by confounders, including smoking status. In addition to restrictive lung disease, clinicians should also be aware that airway obstruction may be a pulmonary manifestation of RA.

16.
Nat Commun ; 12(1): 3152, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035245

RESUMO

The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and localize rare and common risk variants in whole-genome sequencing studies based on a recently developed knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability, and reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine (TOPMed) Program we show that our method compared with conventional association tests can lead to substantially more discoveries.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Sequenciamento Completo do Genoma/métodos , Algoritmos , Causalidade , Simulação por Computador , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Loci Gênicos , Genoma Humano , Humanos , Desequilíbrio de Ligação , Cadeias de Markov , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
17.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L130-L143, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909500

RESUMO

Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB) splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF) = 0.46, P = 1.8e-4]. Two stop variants in coiled-coil α-helical rod protein 1 (CCHCR1), a gene involved in regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINA1 Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.


Assuntos
Exoma/genética , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Regulação da Expressão Gênica , Humanos , Metanálise como Assunto
18.
Respir Res ; 22(1): 127, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906653

RESUMO

BACKGROUND: Soluble receptor for advanced glycation end products (sRAGE) is a proposed emphysema and airflow obstruction biomarker; however, previous publications have shown inconsistent associations and only one study has investigate the association between sRAGE and emphysema. No cohorts have examined the association between sRAGE and progressive decline of lung function. There have also been no evaluation of assay compatibility, receiver operating characteristics, and little examination of the effect of genetic variability in non-white population. This manuscript addresses these deficiencies and introduces novel data from Pittsburgh COPD SCCOR and as well as novel work on airflow obstruction. A meta-analysis is used to quantify sRAGE associations with clinical phenotypes. METHODS: sRAGE was measured in four independent longitudinal cohorts on different analytic assays: COPDGene (n = 1443); SPIROMICS (n = 1623); ECLIPSE (n = 2349); Pittsburgh COPD SCCOR (n = 399). We constructed adjusted linear mixed models to determine associations of sRAGE with baseline and follow up forced expiratory volume at one second (FEV1) and emphysema by quantitative high-resolution CT lung density at the 15th percentile (adjusted for total lung capacity). RESULTS: Lower plasma or serum sRAGE values were associated with a COPD diagnosis (P < 0.001), reduced FEV1 (P < 0.001), and emphysema severity (P < 0.001). In an inverse-variance weighted meta-analysis, one SD lower log10-transformed sRAGE was associated with 105 ± 22 mL lower FEV1 and 4.14 ± 0.55 g/L lower adjusted lung density. After adjusting for covariates, lower sRAGE at baseline was associated with greater FEV1 decline and emphysema progression only in the ECLIPSE cohort. Non-Hispanic white subjects carrying the rs2070600 minor allele (A) and non-Hispanic African Americans carrying the rs2071288 minor allele (A) had lower sRAGE measurements compare to those with the major allele, but their emphysema-sRAGE regression slopes were similar. CONCLUSIONS: Lower blood sRAGE is associated with more severe airflow obstruction and emphysema, but associations with progression are inconsistent in the cohorts analyzed. In these cohorts, genotype influenced sRAGE measurements and strengthened variance modelling. Thus, genotype should be included in sRAGE evaluations.

19.
Am J Respir Cell Mol Biol ; 65(1): 92-102, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788674

RESUMO

Genome-wide association studies (GWASs) have identified dozens of loci associated with risk of chronic obstructive pulmonary disease (COPD). However, identifying the causal variants and their functional role in the appropriate cell type remains a major challenge. We aimed to identify putative causal variants in 82 GWAS loci associated with COPD susceptibility and predict the regulatory impact of these variants in lung-cell types. We used an integrated approach featuring statistical fine mapping, open chromatin profiling, and machine learning to identify functional variants. We generated chromatin accessibility data using the Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) for human primary lung-cell types implicated in COPD pathobiology. We then evaluated the enrichment of COPD risk variants in lung-specific open chromatin regions and generated cell type-specific regulatory predictions for >6,500 variants corresponding to 82 COPD GWAS loci. Integration of the fine-mapped variants with lung open chromatin regions helped prioritize 22 variants in putative regulatory elements with potential functional effects. Comparison with functional predictions from 222 Encyclopedia of DNA Elements (ENCODE) cell samples revealed cell type-specific regulatory effects of COPD variants in the lung epithelium, endothelium, and immune cells. We identified potential causal variants for COPD risk by integrating fine mapping in GWAS loci with cell-specific regulatory profiling, highlighting the importance of leveraging the chromatin status in relevant cell types to predict the molecular effects of risk variants in lung disease.


Assuntos
Cromatina/genética , Loci Gênicos , Pulmão , Doença Pulmonar Obstrutiva Crônica/genética , Elementos de Resposta , Linhagem Celular , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
20.
Clin Epigenetics ; 13(1): 66, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785068

RESUMO

Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...