Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16511, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389781

RESUMO

The present study investigated the interactive effects of three environmental stress factors elevated CO2, temperature, and drought stress on soybean growth and yield. Experiments were conducted in the sunlit, controlled environment Soil-Plant-Atmosphere-Research chambers under two-level of irrigation (WW-well water and WS-water stress-35%WW) and CO2 (aCO2-ambient 400 µmol mol-1 and eCO2-elevated 800 µmol mol-1) and each at the three day/night temperature regimes of 24/18 °C (MLT-moderately low), 28/22 °C (OT-optimum), and 32/26 °C (MHT-moderately high). Results showed the greatest negative impact of WS on plant traits such as canopy photosynthesis (PCnet), total dry weight (TDwt), and seed yield. The decreases in these traits under WS ranged between 40 and 70% averaged across temperature regimes with a greater detrimental impact in plants grown under aCO2 than eCO2. The MHT had an increased PCnet, TDwt, and seed yield primarily under eCO2, with a greater increase under WW than WS conditions. The eCO2 stimulated PCnet, TDwt, and seed yield more under WS than WW. For instance, on average across T regimes, eCO2 stimulated around 25% and 90% dry mass under WW and WS, respectively, relative to aCO2. Overall, eCO2 appears to benefit soybean productivity, at least partially, under WS and the moderately warmer temperature of this study.

2.
PLoS One ; 15(6): e0233905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502194

RESUMO

Water stress (WS) and heat stress (HS) have a negative effect on soybean plant growth and crop productivity. Changes in the physiological characteristics, proteome, and specific metabolites investigated on molecular and cellular functions were studied in two soybean cultivars exposed to different heat and water stress conditions independently and in combination. Leaf protein composition was studied using 2-DE and complemented with MALDI TOF mass spectrometry. While the two cultivars displayed genetic variation in response to water and heat stress, thirty-nine proteins were significantly altered in their relative abundance in response to WS, HS and combined WS+HS in both cultivars. A majority of these proteins were involved in metabolism, response to heat and photosynthesis showing significant cross-tolerance mechanisms. This study revealed that MED37C, a probable mediator of RNA polymerase transcription II protein, has potential interacting partners in Arabidopsis and signified the marked impact of this on the PI-471938 cultivar. Elevated activities in antioxidant enzymes indicate that the PI-471938 cultivar can restore the oxidation levels and sustain the plant during the stress. The discovery of this plant's development of cross-stress tolerance could be used as a guide to foster ongoing genetic modifications in stress tolerance.


Assuntos
Aclimatação/fisiologia , Secas , Resposta ao Choque Térmico , Proteínas de Plantas/metabolismo , Soja/fisiologia , Clorofila/análise , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredução , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica , Solo/química , Água/análise
3.
Front Plant Sci ; 9: 1116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127794

RESUMO

In nature, crops such as soybean are concurrently exposed to temperature (T) stress and phosphorus (P) deficiency. However, there is a lack of reports regarding soybean response to T × P interaction. To fill in this knowledge-gap, soybean was grown at four daily mean T of 22, 26, 30, and 34°C (moderately low, optimum, moderately high, and high temperature, respectively) each under sufficient (0.5 mM) and deficient (0.08 mM) P nutrition for the entire season. Phosphorus deficiency exacerbated the low temperature stress, with further restrictions on growth and net photosynthesis. For P deficient soybean at above optimum temperature (OT) regimes, growth, and photosynthesis was maintained at levels close to those of P sufficient plants, despite a lower tissue P concentration. P deficiency consistently decreased plant tissue P concentration ≈55% across temperatures while increasing intrinsic P utilization efficiency of canopy photosynthesis up to 147%, indicating a better utilization of tissue P. Warmer than OTs delayed the time to anthesis by 8-14 days and pod development similarly across P levels. However, biomass partitioning to pods was greater under P deficiency. There were significant T × P interactions for traits such as plant growth rates, total leaf area, biomass partitioning, and dry matter production, which resulted a distinct T response of soybean growth between sufficient and deficient P nutrition. Under sufficient P level, both lower and higher than optimum T tended to decrease total dry matter production and canopy photosynthesis. However, under P-deficient condition, this decrease was primarily observed at the low T. Thus, warmer than optimum T of this study appeared to compensate for decreases in soybean canopy photosynthesis and dry matter accumulation resulting from P deficiency. However, warmer than OT appeared to adversely affect reproductive structures, such as pod development, across P fertilization. This occurred despite adaptations, especially the increased P utilization efficiency and biomass partitioning to pods, shown by soybean under P deficiency.

4.
Photosynth Res ; 137(2): 183-200, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29478203

RESUMO

Plants photosynthesis-related traits are co-regulated to capture light and CO2 to optimize the rate of CO2 assimilation (A). The rising CO2 often benefits, but potassium (K) deficiency adversely affects A that contributes to the majority of plant biomass. To evaluate mechanisms of photosynthetic limitations and adaptations, soybean was grown under controlled conditions with an adequate (control, 5.0 mM) and two K-deficient (moderate, 0.50 and severe, 0.02 mM) levels under ambient (aCO2; 400 µmol mol-1) and elevated CO2 (eCO2; 800 µmol mol-1). Results showed that under severe K deficiency, pigments, leaf absorption, processes of light and dark reactions, and CO2 diffusion through stomata and mesophyll were down co-regulated with A while light compensation point increased and photorespiration, alternative electron fluxes, and respiration were up-regulated. However, under moderate K deficiency, these traits were well co-regulated with the sustained A without any obvious limitations amid ≈ 50% reduction in leaf K level. Primary mechanism of K limitation to A was either biochemical processes (Lb ≈ 60%) under control and moderate K deficiency or the CO2 diffusion limitations (DL ≈ 70%) with greater impacts of mesophyll than stomatal pathways under severe K deficiency. The eCO2 increased DL while lessened the Lb under K deficiency. Adaptation strategies to severe K deficiency included an enhanced K utilization efficiency (KUE), and reduction of photosystem II excitation pressure by decreasing photosynthetic pigments, light absorption, and photochemical quenching while increasing photorespiration and alternative electron fluxes. The eCO2 also stimulated A and KUE when K deficiency was not severe. Thus, plants responded to K deficiency by a coordinated regulation of photosynthetic processes to optimize A, and eCO2 failed to alleviate the DL in severely K-deficient plants.


Assuntos
Dióxido de Carbono/administração & dosagem , Fotossíntese/fisiologia , Potássio/metabolismo , Soja/efeitos dos fármacos , Soja/fisiologia , Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fluorescência , Luz , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Transpiração Vegetal
5.
Front Plant Sci ; 8: 991, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642785

RESUMO

Elevated carbon dioxide (eCO2) often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K) deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM) and two deficient (0.50 and 0.02 mM) levels of K under ambient CO2 (aCO2; 400 µmol mol-1) and eCO2 (800 µmol mol-1). Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet). In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl), and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K), photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum K fertilization for maximum crop productivity under eCO2. Thus, eCO2 compensated, at least partially, for the reduced soybean growth and seed yield under 0.5 mM K supply, but severe K deficiency completely suppressed the eCO2-enhanced seed yield.

6.
J Plant Physiol ; 205: 20-32, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27589223

RESUMO

To evaluate the combined effect of temperature and CO2 on photosynthetic processes, leaf metabolites and growth, soybean was grown under a controlled environment at low (22/18°C, LT), optimum (28/24°C, OT) and high (36/32°C HT) temperatures under ambient (400µmolmol-1; aCO2) or elevated (800µmolmol-1; eCO2) CO2 concentrations during the reproductive stage. In general, the rate of photosynthesis (A), stomatal (gs) and mesophyll (gm) conductance, quantum yield of photosystem II, rates of maximum carboxylation (VCmax), and electron transport (J) increased with temperature across CO2 levels. However, compared with OT, the percentage increases in these parameters at HT were lower than the observed decline at LT. The photosynthetic limitation at LT and OT was primarily caused by photo-biochemical processes (49-58%, Lb) followed by stomatal (27-32%, Ls) and mesophyll (15-19%, Lm) limitations. However, at HT, it was primarily caused by Ls (41%) followed by Lb (33%) and Lm (26%). The dominance of Lb at LT and OT was associated with the accumulation of non-structural carbohydrates (e.g., starch) and several organic acids, whereas this accumulation did not occur at HT, indicating increased metabolic activities. Compared with OT, biomass and seed yield declined more at HT than at LT. The eCO2 treatment compensated for the temperature-stress effects on biomass but only partially compensated for the effects on seed yield, especially at HT. Photosynthetic downregulation at eCO2 was possibly due to the accumulation of non-structural carbohydrates and the decrease in gs and Astd (standard A measured at 400µmolmol-1 sub-stomatal CO2 concentration), as well as the lack of CO2 effect on gm, VCmax, and J, and photosynthetic limitation. Thus, the photosynthetic limitation was temperature-dependent and was primarily influenced by the alteration in photo-biochemical processes and metabolic activities. Despite the inconsistent response of photosynthesis (or biomass accumulation) and seed yield, eCO2 tended to fully or partially compensate for the adverse effect of the respective LT and HT stresses under well-watered and sufficient nutrient conditions.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Soja/fisiologia , Biomassa , Ácidos Carboxílicos/metabolismo , Temperatura Baixa , Transporte de Elétrons , Temperatura Alta , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Soja/crescimento & desenvolvimento , Estresse Fisiológico
7.
BMC Plant Biol ; 16(1): 174, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488358

RESUMO

BACKGROUND: Chlorophyll is a major component of chloroplasts and a better understanding of the genetic basis of chlorophyll in soybean [Glycine max (L.) Merr.] might contribute to improving photosynthetic capacity and yield in regions with adverse environmental conditions. A collection of 332 diverse soybean genotypes were grown in 2 years (2009 and 2010) and chlorophyll a (eChl_A), chlorophyll b (eChl_B), and total chlorophyll (eChl_T) content as well as chlorophyll a/b ratio (eChl_R) in leaf tissues were determined by extraction and spectrometric determination. Total chlorophyll was also derived from canopy spectral reflectance measurements using a model of wavelet transformed spectra (tChl_T) as well as with a spectral reflectance index (iChl_T). RESULTS: A genome-wide associating mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify loci associated with the extract based eChl_A, eChl_B, eChl_R and eChl_T measurements and the two canopy spectral reflectance-based methods (tChl_T and iChl_T). A total of 23 (14 loci), 15 (7 loci) and 14 SNPs (10 loci) showed significant association with eChl_A, eChl_B and eChl_R respectively. A total of 52 unique SNPs were significantly associated with total chlorophyll content based on at least one of the three approaches (eChl_T, tChl_T and iChl_T) and likely tagged 27 putative loci for total chlorophyll content, four of which were indicated by all three approaches. CONCLUSIONS: Results presented here show that markers for chlorophyll traits can be identified in soybean using both extract-based and canopy spectral reflectance-based phenotypes, and confirm that high-throughput phenotyping-amenable canopy spectral reflectance measurements can be used for association mapping.


Assuntos
Clorofila/química , Extratos Vegetais/química , Folhas de Planta/química , Soja/genética , Clorofila/genética , Clorofila/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Extratos Vegetais/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Soja/química , Soja/metabolismo
8.
Physiol Plant ; 157(2): 234-54, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26806194

RESUMO

Despite the development of various methods, the rapid estimation of mesophyll conductance (gm ) for a large number of samples is still a daunting challenge. Although the accurate estimation of gm is critical to partition photosynthetic limitations by stomatal (Ls ) and mesophyll (Lm ) conductance and by photo-biochemical (Lb ) processes, the impact of various gm estimation methods on this is ambiguous. As phosphorus (P) starvation and elevated CO2 (eCO2 ) strongly affect photosynthetic processes, their combined effect on the proportional changes in these limitations are not well understood. To investigate this, while also evaluating distinct recent methods of gm estimation sharing few common theories and assumptions, soybean was grown under a range of P nutrition at ambient and eCO2 . Methods significantly affected gm and carboxylation efficiency (VCmax ) but not other photosynthetic parameters. In all the methods, all photosynthetic parameters responded similarly to treatments. However, the percentage difference between VCmax assuming finite and infinite gm was highly inconsistent among methods. The primary mechanism responsible for P limitation to soybean photosynthesis was not CO2 diffusion limitations but Lb comprised of reduced chlorophyll, photochemistry and biochemical processes. The eCO2 decreased Lb but increased Lm without affecting Ls across leaf P concentration. Although each method explored advances of our understanding about gm variability, they all require assumptions of varying degrees, which lead to the discrepancy in the gm values. Among the methods, the oxygen sensitivity-based gm estimation appeared to be suitable for the quick assessment of a large number of samples or genotypes. Digital tools are provided for the easy estimation of gm for some methods.


Assuntos
Células do Mesofilo/fisiologia , Fósforo/deficiência , Fotossíntese , Transpiração Vegetal/fisiologia , Soja/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Difusão , Luz , Células do Mesofilo/efeitos da radiação , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos da radiação , Soja/efeitos da radiação
9.
Front Plant Sci ; 7: 1967, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28083005

RESUMO

A detailed investigation of the concentration (e.g., mg g-1 seed) and total yield (e.g., g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO2 and eCO2 (400 and 800 µmol mol-1, respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r2 = 0.96), whereas yield-based relationship was positive (r2 = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO2. Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO2, which was attributable to the increased seed production especially near sufficient P nutrition. The P × CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO2 under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed components yield consistently declined under P starvation except for several amino acids. The study highlighted a P nutritional-status dependent response of soybean seed components to eCO2 suggesting the requirement of an adequate P supply to obtain the beneficial effects of eCO2 on the overall yield of various seed components.

10.
J Photochem Photobiol B ; 151: 276-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26343044

RESUMO

To evaluate the response of CO2 assimilation rate (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition, soybean plants were grown in controlled environment with sufficient (0.50mM) and deficient (0.10 and 0.01 mM) phosphate (P) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 µmol mol(-1), respectively). Measurements were made at ambient (21%) and low (2%) O2 concentrations. Results showed strong correlation of leaf P concentration with PN and CF parameters. The P deficiency showed parallel decreases in PN, and CF parameters including quantum efficiency (Fv'/Fm'), quantum yield of photosystem II (ΦPSII), electron transport rate (JF), and photochemical quenching (qP). The Fv'/Fm' decreased as a result of greater decline in maximal (Fm') than minimal (Fo') fluorescence. The eCO2 stimulated PN especially under higher leaf P concentrations. Low O2 also stimulated PN but only at aCO2. The photosynthetic carbon reduction (PCR, signified by PN) and photorespiratory carbon oxidation cycles (PCO, signified photorespiration as indicated by ratio of JF to gross PN and % increase in PN at 2% O2) was the major electron sinks. However, the presence of alternative electron sink was also evident as determined by the difference between the electron transport calculated from chlorophyll fluorescence and gas exchange measurements. Alternative electron sink declined at lower leaf P concentration suggesting its minor role in photochemical energy consumption, thus dissipation of the excess excitation pressure of PSII reaction center under P deficiency. The JF/PG and % increase in PN at 2 versus 21% O2 remained consistent across leaf P concentration suggesting PCO cycle as an important mechanism to dissipate excess excitation energy in P deficient leaves. The severe decline of Fv'/Fm', ΦPSII, JF and qP under P deficiency also suggested the occurrences of excess radiant energy dissipation by non-photochemical quenching mechanisms. Critical leaf P concentration (CLPC) needed to achieve 90% of the maximum value was greater for PN than CF parameters. Moreover, CLPC was always higher at eCO2 suggesting increased sensitivity of soybean to P deficiency under eCO2. An increased phosphorus utilization efficiency of PN and CF parameters was also achieved but with the expense of net CO2 assimilation in P-deficient leaves.


Assuntos
Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Soja/metabolismo , Carbono/metabolismo , Elétrons , Fluorescência , Oxigênio/metabolismo , Fotossíntese
11.
PLoS One ; 10(9): e0137213, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368323

RESUMO

Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L.) Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro) in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro) and a spectral reflectance index (iCaro). An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.


Assuntos
Carotenoides , Genótipo , Extratos Vegetais/química , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Soja , Carotenoides/biossíntese , Carotenoides/química , Carotenoides/genética , Loci Gênicos , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Soja/química , Soja/genética , Soja/metabolismo
12.
G3 (Bethesda) ; 5(11): 2391-403, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374596

RESUMO

Ureides are the N-rich products of N-fixation that are transported from soybean nodules to the shoot. Ureides are known to accumulate in leaves in response to water-deficit stress, and this has been used to identify genotypes with reduced N-fixation sensitivity to drought. Our objectives in this research were to determine shoot ureide concentrations in 374 Maturity Group IV soybean accessions and to identify genomic regions associated with shoot ureide concentration. The accessions were grown at two locations (Columbia, MO, and Stuttgart, AR) in 2 yr (2009 and 2010) and characterized for ureide concentration at beginning flowering to full bloom. Average shoot ureide concentrations across all four environments (two locations and two years) and 374 accessions ranged from 12.4 to 33.1 µmol g(-1) and were comparable to previously reported values. SNP-ureide associations within and across the four environments were assessed using 33,957 SNPs with a MAF ≥0.03. In total, 53 putative loci on 18 chromosomes were identified as associated with ureide concentration. Two of the putative loci were located near previously reported QTL associated with ureide concentration and 30 loci were located near genes associated with ureide metabolism. The remaining putative loci were not near chromosomal regions previously associated with shoot ureide concentration and may mark new genes involved in ureide metabolism. Ultimately, confirmation of these putative loci will provide new sources of variation for use in soybean breeding programs.


Assuntos
Alantoína/genética , Genoma de Planta , Soja/genética , Alantoína/metabolismo , Secas , Ecossistema , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Loci Gênicos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Soja/crescimento & desenvolvimento , Soja/metabolismo , Estresse Fisiológico/genética
14.
Plant Genome ; 8(3): eplantgenome2014.11.0086, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33228264

RESUMO

Nitrogen is a primary plant nutrient that plays a major role in achieving maximum economic yield. Insufficient availability most often limits soybean [Glycine max (L.) Merr.] crop growth. Symbiotic N2 fixation in soybean is highly sensitive to limited water availability, and breeding for reduced N2 fixation sensitivity to drought is considered an important objective to improve yields under drought. The objective of this study was to identify single nucleotide polymorphism (SNP) markers associated with N traits. A collection of 373 diverse soybean genotypes were grown in four field environments (2 yr and two locations) and characterized for N derived from atmosphere (Ndfa), N concentration ([N]), and C/N ratio. The population structure of 373 soybean genotypes was assessed based on 31,145 SNPs and genome-wide association analysis using a unified mixed model identified SNPs associated with Ndfa, [N], and C/N ratio. Although the Ndfa, [N], and C/N ratio values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. While numerous SNPs were identified by association analysis for each trait in only one of the four environments, 17, 19, and 24 SNPs showed a significant association with Ndfa, [N], and C/N ratio, respectively, in at least two environments as well as with the average across all four environments. These markers represent an important resource for pyramiding favorable alleles for drought tolerance and for identifying extremes for comparative physiological studies.

15.
Theor Appl Genet ; 128(1): 73-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367378

RESUMO

KEY MESSAGE: Using genome-wide association studies, 39 SNP markers likely tagging 21 different loci for carbon isotope ratio (δ (13) C) were identified in soybean. Water deficit stress is a major factor limiting soybean [Glycine max (L.) Merr.] yield. Soybean genotypes with improved water use efficiency (WUE) may be used to develop cultivars with increased yield under drought. A collection of 373 diverse soybean genotypes was grown in four environments (2 years and two locations) and characterized for carbon isotope ratio (δ(13)C) as a surrogate measure of WUE. Population structure was assessed based on 12,347 single nucleotide polymorphisms (SNPs), and genome-wide association studies (GWAS) were conducted to identify SNPs associated with δ(13)C. Across all four environments, δ(13)C ranged from a minimum of -30.55‰ to a maximum of -27.74‰. Although δ(13)C values were significantly different between the two locations in both years, results were consistent among genotypes across years and locations. Diversity analysis indicated that eight subpopulations could contain all individuals and revealed that within-subpopulation diversity, rather than among-subpopulation diversity, explained most (80%) of the diversity among the 373 genotypes. A total of 39 SNPs that showed a significant association with δ(13)C in at least two environments or for the average across all environments were identified by GWAS. Fifteen of these SNPs were located within a gene. The 39 SNPs likely tagged 21 different loci and demonstrated that markers for δ(13)C can be identified in soybean using GWAS. Further research is necessary to confirm the marker associations identified and to evaluate their usefulness for selecting genotypes with increased WUE.


Assuntos
Isótopos de Carbono/análise , Genótipo , Polimorfismo de Nucleotídeo Único , Soja/genética , Secas , Estudos de Associação Genética , Genética Populacional , Desequilíbrio de Ligação , Modelos Genéticos , Estresse Fisiológico
16.
J Plant Physiol ; 170(9): 801-13, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23384758

RESUMO

Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800µmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.


Assuntos
Dióxido de Carbono/farmacologia , Gossypium/efeitos dos fármacos , Fósforo/farmacologia , Fotossíntese/efeitos dos fármacos , Aclimatação , Biomassa , Carbono/metabolismo , Clorofila/metabolismo , Difusão , Fluorescência , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Gossypium/efeitos da radiação , Luz , Células do Mesofilo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/fisiologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal , Temperatura
17.
J Photochem Photobiol B ; 105(1): 40-50, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21820316

RESUMO

Drought is the major abiotic stress factor that causes extensive losses to agriculture production worldwide. The objective of this study was to evaluate the dynamics of photosynthesis and water-use efficiency parameters in 15 cowpea genotypes under well-watered and drought condition. Photosynthesis (A) and chlorophyll fluorescence (Fv'/Fm') declined linearly with decreasing soil water content whereas intrinsic water-use efficiency (WUE) increased under drought stress, suggesting stomatal regulation was a major limitation to photosynthesis. However, under increasing drought conditions, increase in ratio of intercellular CO(2) to ambient CO(2) concentrations along with reduced WUE showed the role of non-stomatal limitation of photosynthesis. The resistant nature of Fv'/Fm' and electron transport rate under drought appeared to be important mechanisms for photoinhibition protection under drought stress. Oxidative stress was apparent due to drought-induced reduction in total chlorophyll and carotenoid which was accompanied with increased leaf wax contents. The accumulation of proline appeared to be in response of drought injury rather than a drought tolerance mechanism. A clear separation based on the genotypes site of origin among the genotypes for drought tolerance could not be established when analyzed using principal component analysis. The identified genotypes and physiological traits from this study may be useful for genetic engineering and breeding programs integrating drought adaptation in cowpea.


Assuntos
Fabaceae/metabolismo , Fotossíntese/fisiologia , Estômatos de Plantas/metabolismo , Estresse Fisiológico , Água/metabolismo , Dióxido de Carbono/metabolismo , Secas , Transporte de Elétrons , Fluorometria , Folhas de Planta/química , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Análise de Componente Principal , Solo/química
18.
J Photochem Photobiol B ; 100(3): 135-46, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20605100

RESUMO

The carbon dioxide concentration [CO(2)], temperature and ultraviolet B radiation (UVB) are concomitant factors projected to change in the future environment, and their possible interactions are of significant interest to agriculture. The objectives of this study were to evaluate interactive effects of atmospheric [CO(2)], temperature, and UVB radiation on growth, physiology and reproduction of cowpea genotypes and to identify genotypic tolerance to multiple stressors. Six cowpea (Vigna unguiculata [L.] Walp.) genotypes differing in their sites of origin were grown in sunlit, controlled environment chambers. The treatments consisted of two levels each of atmospheric [CO(2)] (360 and 720 micromol mol(-1)), UVB [0 and 10 kJ m(-2)d(-1)) and temperatures [30/22 and 38/30 degrees C] from 8 days after emergence to maturity. The ameliorative effects of elevated [CO(2)] on increased UVB radiation and temperature effects were observed for most of the vegetative and photosynthetic traits but not for pollen production, pollen viability and yield attributes. The combined stress response index (C-TSRI) derived from vegetative (V-TSRI) and reproductive (R-TSRI) parameters revealed that the genotypes responded negatively with varying magnitude of responses to the stressors. Additionally, in response to multiple abiotic stresses, the vegetative traits diverged from that of reproductive traits, as deduced from the positive V-TSRI and negative R-TSRI observed in most of the genotypes and poor correlation between these two processes. The UVB in combination with increased temperature caused the greatest damage to cowpea vegetative growth and reproductive potential. The damaging effects of high temperature on seed yield was not ameliorated by elevated [CO(2)]. The identified tolerant genotypes and groups of plant attributes could be used to develop genotypes with multiple abiotic stress tolerance.


Assuntos
Fabaceae/crescimento & desenvolvimento , Estresse Fisiológico , Dióxido de Carbono/farmacologia , Exposição Ambiental , Fabaceae/genética , Fabaceae/efeitos da radiação , Genótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Pólen/efeitos da radiação , Temperatura , Raios Ultravioleta
19.
J Photochem Photobiol B ; 93(2): 71-81, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18723366

RESUMO

The current and projected terrestrial ultraviolet-B (UV-B) radiation affects growth and reproductive potential of many crops. Cowpea (Vigna unguiculata [L.] Walp.), mostly grown in tropical and sub-tropical regions may already be experiencing critical doses of UV-B radiation due to a thinner ozone column in those regions. Better understanding of genotypic variability to UV-B radiation is a prerequisite in developing genotypes tolerant to current and projected changes in UV-B radiation. An experiment was conducted in sunlit, controlled environment chambers to evaluate the sensitivity of cowpea genotypes to a range of UV-B radiation levels. Six cowpea genotypes [Prima, California Blackeye (CB)-5, CB-27, CB-46, Mississippi Pinkeye (MPE) and UCR-193], representing origin of different geographical locations, were grown at 30/22 degrees C day/night temperature from seeding to maturity. Four biologically effective ultraviolet-B radiation treatments of 0 (control), 5, 10, and 15 kJ m(-2)d(-1) were imposed from eight days after emergence to maturity. Significant genotypic variability was observed for UV-B responsiveness of eighteen plant attributes measured. The magnitude of the sensitivity to UV-B radiation also varied among cowpea genotypes. Plants from all genotypes grown in elevated UV-B radiation were significantly shorter in stem and flower lengths and exhibited lower seed yields compared to the plants grown under control conditions. Most of the vegetative parameters, in general, showed a positive response to UV-B, whereas the reproductive parameters exhibited a negative response showing the importance of reproductive characters in determining tolerance of cultivars to UV-B radiation. However, all cultivars, except MPE, behaved negatively to UV-B when a combined response index was derived across parameters and UV-B levels. Based on the combined total stress response index (C-TSRI) calculated as sum of individual vegetative, physiological and reproductive component responses over the UV-B treatments, the genotypes were classified as tolerant (MPE), intermediate (CB-5, CB-46 and UCR-193) and sensitive (CB-27 and Prima) to UV-B radiation. The differences in sensitivity among the cowpea genotypes emphasize the need for selecting or developing genotypes with tolerance to current and projected UV-B radiation.


Assuntos
Fabaceae/genética , Fabaceae/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Membrana Celular/efeitos da radiação , Fabaceae/crescimento & desenvolvimento , Fabaceae/fisiologia , Genótipo , Fotossíntese/efeitos da radiação , Processos Fototróficos , Tolerância a Radiação/genética , Reprodução/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...