Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Reg Health Southeast Asia ; : 100023, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35769163

RESUMO

Background: Surge of SARS CoV-2 infections ascribed to omicron variant began in December 2021 in New Delhi. We determined the infection and reinfection density in a cohort of health care workers (HCWs) along with vaccine effectiveness (VE) against symptomatic infection within omicron transmission period (considered from December 01, 2021 to February 25, 2022. Methods: This is an observational study from the All India Institute of Medical Sciences, New Delhi. Data were collected telephonically. Person-time at risk was counted from November 30, 2021 till date of infection/ reinfection, or date of interview. Comparison of clinical features and severity was done with previous pandemic periods. VE was estimated using test-negative case-control design [matched pairs (for age and sex)]. Vaccination status was compared and adjusted odds ratios (OR) were computed by conditional logistic regression. VE was estimated as (1-adjusted OR)X100-. Findings: 11474 HCWs participated in this study. The mean age was 36⋅2 (±10⋅7) years. Complete vaccination with two doses were reported by 9522 (83%) HCWs [8394 (88%) Covaxin and 1072 Covishield (11%)]. The incidence density of all infections and reinfection during the omicron transmission period was 34⋅8 [95% Confidence Interval (CI): 33⋅5-36⋅2] and 45⋅6 [95% CI: 42⋅9-48⋅5] per 10000 person days respectively. The infection was milder as compared to previous periods. VE was 52⋅5% (95% CI: 3⋅9-76⋅5, p = 0⋅036) for those who were tested within 14-60 days of receiving second dose and beyond this period (61-180 days), modest effect was observed. Interpretation: Almost one-fifth of HCWs were infected with SARS CoV-2 during omicron transmission period, with predominant mild spectrum of COVID-19 disease. Waning effects of vaccine protection were noted with increase in time intervals since vaccination. Funding: None.

2.
Front Immunol ; 13: 813888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720420

RESUMO

FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-ß cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-ß1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-ß1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-ß1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-ß1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-ß1/2 secretion. Reduced TGF-ß1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-ß1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-ß1/2.


Assuntos
Caderinas , Glioblastoma , Glioma , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Regulação para Cima
3.
Genes (Basel) ; 13(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328060

RESUMO

Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.


Assuntos
Astrócitos , Ácido Glutâmico , Células-Tronco Neurais , Astrócitos/metabolismo , Hipóxia Celular , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Neurais/metabolismo
4.
JAMA Netw Open ; 5(1): e2142210, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994793

RESUMO

Importance: A surge of COVID-19 occurred from March to June 2021, in New Delhi, India, linked to the B.1.617.2 (Delta) variant of SARS-CoV-2. COVID-19 vaccines were rolled out for health care workers (HCWs) starting in January 2021. Objective: To assess the incidence density of reinfection among a cohort of HCWs and estimate the effectiveness of the inactivated whole virion vaccine BBV152 against reinfection. Design, Setting, and Participants: This was a retrospective cohort study among HCWs working at a tertiary care center in New Delhi, India. Exposures: Vaccination with 0, 1, or 2 doses of BBV152. Main Outcomes and Measures: The HCWs were categorized as fully vaccinated (with 2 doses and ≥15 days after the second dose), partially vaccinated (with 1 dose or 2 doses with <15 days after the second dose), or unvaccinated. The incidence density of COVID-19 reinfection per 100 person-years was computed, and events from March 3, 2020, to June 18, 2021, were included for analysis. Unadjusted and adjusted hazard ratios (HRs) were estimated using a Cox proportional hazards model. Estimated vaccine effectiveness (1 - adjusted HR) was reported. Results: Among 15 244 HCWs who participated in the study, 4978 (32.7%) were diagnosed with COVID-19. The mean (SD) age was 36.6 (10.3) years, and 55.0% were male. The reinfection incidence density was 7.26 (95% CI: 6.09-8.66) per 100 person-years (124 HCWs [2.5%], total person follow-up period of 1696 person-years as time at risk). Fully vaccinated HCWs had lower risk of reinfection (HR, 0.14 [95% CI, 0.08-0.23]), symptomatic reinfection (HR, 0.13 [95% CI, 0.07-0.24]), and asymptomatic reinfection (HR, 0.16 [95% CI, 0.05-0.53]) compared with unvaccinated HCWs. Accordingly, among the 3 vaccine categories, reinfection was observed in 60 of 472 (12.7%) of unvaccinated (incidence density, 18.05 per 100 person-years; 95% CI, 14.02-23.25), 39 of 356 (11.0%) of partially vaccinated (incidence density 15.62 per 100 person-years; 95% CI, 11.42-21.38), and 17 of 1089 (1.6%) fully vaccinated (incidence density 2.18 per 100 person-years; 95% CI, 1.35-3.51) HCWs. The estimated effectiveness of BBV152 against reinfection was 86% (95% CI, 77%-92%); symptomatic reinfection, 87% (95% CI, 76%-93%); and asymptomatic reinfection, 84% (95% CI, 47%-95%) among fully vaccinated HCWs. Partial vaccination was not associated with reduced risk of reinfection. Conclusions and Relevance: These findings suggest that BBV152 was associated with protection against both symptomatic and asymptomatic reinfection in HCWs after a complete vaccination schedule, when the predominant circulating variant was B.1.617.2.


Assuntos
COVID-19/epidemiologia , Pessoal de Saúde , Reinfecção , SARS-CoV-2 , Adulto , COVID-19/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Estudos de Coortes , Feminino , Humanos , Imunogenicidade da Vacina , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Centros de Atenção Terciária , Vacinas de Produtos Inativados/administração & dosagem , Vírion/imunologia , Adulto Jovem
5.
J Med Virol ; 94(4): 1696-1700, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34786733

RESUMO

Emerging reports of SARS-CoV-2 breakthrough infections entail methodical genomic surveillance for determining the efficacy of vaccines. This study elaborates genomic analysis of isolates from breakthrough infections following vaccination with AZD1222/Covishield and BBV152/Covaxin. Variants of concern B.1.617.2 and B.1.1.7 responsible for cases surge in April-May 2021 in Delhi, were the predominant lineages among breakthrough infections.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Genoma Viral/genética , Genômica , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Adulto Jovem
6.
BMC Genom Data ; 22(1): 49, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775962

RESUMO

BACKGROUND: There is an urgent need to understand the key events driving pathogenesis of severe COVID-19 disease, so that precise treatment can be instituted. In this respect NETosis is gaining increased attention in the scientific community, as an important pathological process contributing to mortality. We sought to test if indeed there exists robust evidence of NETosis in multiple transcriptomic data sets from human subjects with severe COVID-19 disease. Gene set enrichment analysis was performed to test for up-regulation of gene set functional in NETosis in the blood of patients with COVID-19 illness. RESULTS: Blood gene expression functional in NETosis increased with severity of illness, showed negative correlation with blood oxygen saturation, and was validated in the lung of COVID-19 non-survivors. Temporal expression of IL-6 was compared between severe and moderate illness with COVID-19. Unsupervised clustering was performed to reveal co-expression of IL-6 with complement genes. In severe COVID-19 illness, there is transcriptional evidence of activation of NETosis, complement and coagulation cascade, and negative correlation between NETosis and respiratory function (oxygen saturation). An early spike in IL-6 is observed in severe COVID-19 illness that is correlated with complement activation. CONCLUSIONS: Based on the transcriptional dynamics of IL-6 expression and its downstream effect on complement activation, we constructed a model that links early spike in IL-6 level with persistent and self-perpetuating complement activation, NETosis, immunothrombosis and respiratory dysfunction. Our model supports the early initiation of anti-IL6 therapy in severe COVID-19 disease before the life-threatening complications of the disease can perpetuate themselves autonomously.


Assuntos
COVID-19/imunologia , Armadilhas Extracelulares , Interleucina-6 , Trombose/virologia , Transcriptoma , COVID-19/patologia , Proteínas do Sistema Complemento/genética , Humanos , Interleucina-6/genética , Oxigênio
7.
Front Oncol ; 11: 699594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621669

RESUMO

Differences in the incidence and outcome of glioma between males and females are well known, being more striking for glioblastoma (GB) than low-grade glioma (LGG). The extensive and well-annotated data in publicly available databases enable us to analyze the molecular basis of these differences at a global level. Here, we have analyzed The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to identify molecular indicators for these gender-based differences by different methods. Based on the nature of data available/accessible, the transcriptomic profile was studied in TCGA by using DeSeq2 and in CGGA by T-test, after correction based. Only IDH1 wild-type tumors were studied in CGGA. Using weighted gene co-expression network analysis (WGCNA), network analysis was done, followed by the assessment of modular differential connectivity. Differentially affected signaling pathways were identified. The gender-based effects of differentially expressed genes on survival were determined. DNA methylation was studied as an indicator of gender-based epigenetic differences. The results clearly showed gender-based differences in both GB and LGG, whatever method or database was used. While there were differences in the results obtained between databases and methods used, some major signaling pathways such as Wnt signaling and pathways involved in immune processes and the adaptive immune response were common to different assessments. There was also a differential gender-based influence of several genes on survival. Also, the autosomal genes NOX, FRG1BP, and AL354714.2 and X-linked genes such as PUDP, KDM6A, DDX3X, and SYAP1 had differential DNA methylation and expression profile in male and female GB, while for LGG, these included autosomal genes such as CNIH3 and ANKRD11 and X-linked genes such as KDM6A, MAOB, and EIF2S3. Some, such as FGF13 and DDX3X, have earlier been shown to have a role in tumor behavior, though their dimorphic effects in males and females have not been identified. Our study thus identifies several crucial differences between male and female glioma, which could be validated further. It also highlights that molecular studies without consideration of gender can obscure critical elements of biology and emphasizes the importance of parallel but separate analyses of male and female glioma.

8.
PLoS Pathog ; 17(9): e1009958, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559854

RESUMO

Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , Reações Cruzadas/imunologia , Humanos , Plasma/imunologia
9.
Appl Microbiol Biotechnol ; 105(16-17): 6315-6332, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423407

RESUMO

The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.


Assuntos
COVID-19 , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunização Passiva , Imunoterapia , SARS-CoV-2
10.
Transl Oncol ; 14(7): 101097, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878524

RESUMO

A recent study in Scientific Reports identified glypican-3 (GPC3) as a novel extracellular interacting protein for FAT1 in hepato-cellular carcinoma (HCC) cells. FAT1 is a large transmembrane atypical cadherin with limited knowledge existing about its binding partners. While in Drosophila, dachsous (ds), another transmembrane member of the cadherin superfamily, is known to function as FAT1 ligand, no ligand is known in mammals so far. The revelation of GPC3 as a potential binding partner of FAT1 extracellular domain unfolds an opportunity to study potential triggers of FAT1 signaling in cancers. Available inhibitors of GPC3 in various phases of clinical trials also present an attractive option to curb GPC3-FAT1 signaling in tumors that overexpress these proteins.

11.
Biotechnol Prog ; 37(3): e3136, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620776

RESUMO

Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.


Assuntos
Bacteriófagos/genética , Códon de Terminação/genética , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais/genética , COVID-19/virologia , Humanos , Região Variável de Imunoglobulina/genética , Biblioteca de Peptídeos , Ligação Proteica/genética , RNA Viral/genética , SARS-CoV-2/genética
12.
Nanomedicine (Lond) ; 15(23): 2229-2239, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32924855

RESUMO

Background: Poly(lactic-co-glycolic) acid nanoparticle (PLGA-NP) trafficking across cell membranes was investigated to confirm preliminary results that contradicted existing studies. Materials & methods: Uptake and retention of PLGA-NPs at 37 and 4°C in the presence and absence of metabolic inhibitors in various cell lines was estimated. Results: Pulse experiments with metabolic inhibitors and culturing at 4°C demonstrated the predominantly passive nature of PLGA-NP uptake. Chase experiments with metabolic inhibitors indicated the role of active exocytosis in the extrusion of these NPs. PLGA-NPs with ionic or nonionic hydrophilic coats with highly positive or negative ζ-potential also showed similar results. Conclusion: Our study opens up the possibility of modulation of active exocytosis to increase intracellular retention of NPs for an extended period of drug delivery.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular , Portadores de Fármacos , Ácido Láctico , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
13.
J Biol Chem ; 295(36): 12814-12821, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32727845

RESUMO

There is a desperate need for safe and effective vaccines, therapies, and diagnostics for SARS- coronavirus 2 (CoV-2), the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Herein, we use this technology to search for antibodies targeting the receptor-binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semisynthetic phage library against RBD, leading to the identification of a high-affinity single-chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane-bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin-converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.


Assuntos
Afinidade de Anticorpos , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Anticorpos de Cadeia Única/química , Glicoproteína da Espícula de Coronavírus/química
14.
Cell Death Discov ; 6: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351715

RESUMO

lncRNA genes can be genic or "intergenic". "Genic" RNAs can be further divided into six biotypes. Through genome-wide analysis of a publicly available data set on corticogenesis, we found that the divergent lncRNA (XH) biotype, comprising the lncRNA and the coding gene being in opposite directions in a head-to-head manner, was most prominent during neural commitment. Within this biotype, a coding gene/divergent RNA pair of the BASP1 gene and the uncharacterized RNA loc285696 (hitherto referred as BASP1-AS1) formed a major HUB gene during neuronal differentiation. Experimental validation during the in vitro differentiation of human neural progenitor cells (hNPCs) showed that BASP1-AS1 regulates the expression of its adjacent coding gene, BASP1. Both transcripts increased sharply on the first day of neuronal differentiation of hNPCs, to fall steadily thereafter, reaching very low levels in differentiated neurons. BASP1-AS1 RNA and the BASP1 gene formed a molecular complex that also included the transcription factor TCF12. TCF12 is coded by the DYX1 locus, associated with inherited dyslexia and neurodevelopmental defects. Knockdown of BASP1-AS1, BASP1, or TCF12 impaired the neuronal differentiation of hNPCs, as seen by reduction in DCX and TUJ1-positive cells and by reduced neurite length. There was also increased cell proliferation. A common set of critical genes was affected by the three molecules in the complex. Our study thus identified the role of the XH biotype and a novel mediator of neuronal differentiation-the complex of BASP1-AS1, BASP1, and TCF12. It also linked a neuronal differentiation pathway to inherited dyslexia.

15.
Methods Mol Biol ; 2131: 329-347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32162265

RESUMO

Mycobacterium sp. is exhibiting complex evolution of antimicrobial resistance (AMR) and can therefore be considered as a serious human pathogen. Many strategies were employed earlier to evade the pathogenesis but AMR became threatened. Molecular tools employing bacteriophage can be an alternative to effective treatment against Mycobacterium. Phage treatment using phage-encoded products, such as lysins, causes lysis of cells; particularly bacteria could be used instead of direct use of these bacteriophages. Modern technologies along with bacteriophage strategies such as in silico immunoinformatics approach, machine learning, and artificial intelligence have been described thoroughly to escape the pathogenesis. Therefore, understanding the molecular mechanisms could be a possible alternative to evade the pathogenesis.


Assuntos
Micobacteriófagos/fisiologia , Infecções por Mycobacterium/prevenção & controle , Mycobacterium/crescimento & desenvolvimento , Animais , Biologia Computacional , Enzimas/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Aprendizado de Máquina , Mycobacterium/efeitos dos fármacos , Mycobacterium/virologia , Infecções por Mycobacterium/tratamento farmacológico , Terapia por Fagos
16.
BMC Cancer ; 20(1): 62, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992226

RESUMO

BACKGROUND: Overexpression of FAT1 gene and its oncogenic effects have been reported in several cancers. Previously, we have documented upregulation of FAT1 gene in glioblastoma (GBM) tumors which was found to increase the expression of proinflammatory markers, HIF-1α, stemness genes and EMT markers in glioma cells. Here, we reveal NFкB (RelA)/RelA/p65 as the transcriptional regulator of FAT1 gene in GBM cells. METHODS: In-silico analysis of FAT1 gene promoter was performed using online bioinformatics tool Promo alggen (Transfac 8.3) to identify putative transcription factor(s) binding motifs. A 4.0 kb FAT1 promoter (- 3220 bp to + 848 bp w.r.t. TSS + 1) was cloned into promoter less pGL3Basic reporter vector. Characterization of FAT1 promoter for transcriptional regulation was performed by in-vitro functional assays using promoter deletion constructs, site directed mutagenesis and ChIP in GBM cells. RESULTS: Expression levels of NFкB (RelA) and FAT1 were found to be increased and positively correlated in GBM tumors (n = 16), REMBRANDT GBM-database (n = 214) and TCGA GBM-database (n = 153). In addition to glioma, positive correlation between NFкB (RelA) and FAT1 expression was also observed in other tumors like pancreatic, hepatocellular, lung and stomach cancers (data extracted from TCGA tumor data). A 4.0 kb FAT1-promoter-construct [- 3220 bp/+ 848 bp, transcription start site (TSS) + 1, having 17 NFкB (RelA) motifs] showed high FAT1 promoter luciferase-activity in GBM cells (U87MG/A172/U373MG). FAT1 promoter deletion-construct pGL3F1 [- 200 bp/+ 848 bp, with 3-NFкB (RelA)-motifs] showed the highest promoter activity. Exposure of GBM cells to known NFкB (RelA)-activators [severe-hypoxia/TNF-α/ectopic-NFкB (RelA) + IKBK vectors] led to increased pGL3F1-promoter activity and increased endogenous-FAT1 expression. Conversely, siRNA-mediated NFкB (RelA) knockdown led to decreased pGL3F1-promoter activity and decreased endogenous-FAT1 expression. Deletion of NFкB (RelA)-motif at - 90 bp/- 80 bp [pGL3F1δ1-construct] showed significant decrease in promoter activity. Site directed mutagenesis at -90 bp/- 80 bp and ChIP assay for endogenous-NFкB (RelA) confirmed the importance of this motif in FAT1 expression regulation. Significant reduction in the migration, invasion as well as colony forming capacity of the U87MG glioma cells was observed on siRNA-mediated knockdown of NFкB (RelA). CONCLUSION: Since FAT1 and NFкB (RelA) are independently known to promote pro-tumorigenic inflammation and upregulate the expression of HIF-1α/EMT/stemness in tumors, targeting the NFкB (RelA)-FAT1 axis may attenuate an important tumor-promoting pathway in GBM. This may also be applicable to other tumors.


Assuntos
Neoplasias Encefálicas/metabolismo , Caderinas/genética , Glioma/metabolismo , Fator de Transcrição RelA/metabolismo , Sítios de Ligação , Neoplasias Encefálicas/genética , Caderinas/química , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Transdução de Sinais
17.
Int J Biol Macromol ; 135: 907-918, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31170490

RESUMO

Monoclonal antibodies (mAbs) and their derivatives have achieved remarkable success as medicine, targeting both diagnostic and therapeutic applications associated with communicable and non-communicable diseases. In the last 3 to 4 decades, tremendous success has been manifested in the field of cancer therapy, autoimmune diseases, cardiovascular and infectious diseases. MAbs are the fastest growing class of biopharmaceuticals, with more than 25 derivatives are in clinical use and 7 of these have been isolated through phage display technology. Phage display technology has gained impetus in the field of medical and health sciences, as a large repertoire of diverse recombinant antibodies, targeting various antigens have been generated in a short span of time. A prominent number of phage display derived antibodies are already approved for therapy and significant numbers are currently in clinical trials. In this review we have discussed the various strategies employed for generation of monoclonal antibodies; their advantages, limitations and potential therapeutic applications. We also discuss the potential of phage display antibody libraries in isolation of monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/genética , Técnicas de Visualização da Superfície Celular/métodos , Proteínas Recombinantes/genética , Humanos
18.
Comput Biol Chem ; 79: 83-90, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30743160

RESUMO

AIM: An integrated protocol of virtual screening involving molecular docking, pharmacophore probing, and simulations was established to identify small novel molecules targeting crucial residues involved in the variant apoE ε4 to mimic its behavior as apoE2 thereby eliminating the amyloid plaque accumulation and facilitating its clearance. MATERIALS AND METHODS: An excellent ligand-based and structure-based approach was made to identify common pharmacophoric features involving structure-based docking with respect to apoE ε4 leading to the development of apoE ε4 inhibitors possessing new scaffolds. An effort was made to design multiple-substituted triazine derivatives series bearing a novel scaffold. A structure-based pharmacophore mapping was developed to explore the binding sites of apoE ε4 which was taken into consideration. Subsequently, virtual screening, ADMET, DFT searches were at work to narrow down the proposed hits to be forwarded as a potential drug likes candidates. Further, the binding patterns of the best-proposed hits were studied and were forwarded for molecular dynamic simulations of 10 ns for its structural optimization. RESULTS: Selectivity profile for the most promising candidates was studied, revealing significantly C13 and C15 to be the most potent compounds. The proposed hits can be forwarded for further study against apoE ε4 involved in neurological disorder Alzheimer's.


Assuntos
Apolipoproteínas E/antagonistas & inibidores , Teoria da Densidade Funcional , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Apolipoproteínas E/genética , Relação Dose-Resposta a Droga , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química
19.
Appl Biochem Biotechnol ; 187(3): 1011-1027, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30151637

RESUMO

Recently conducted human phase- I trials showed protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). The V3 region of the HIV-1 envelope is highly conserved as it is the co-receptor binding site, and is highly immunogenic. Recombinant single-chain antibody fragments (scFvs) can serve as potential tools for construction of chimeric/bispecific antibodies that can target different epitopes on the HIV-1 envelope. Previously, we have constructed a V3 specific human scFv phage recombinant library by a combinational approach of Epstein-Barr virus (EBV) transformation and antigen (V3) preselection, using peripheral blood mononuclear cells (PBMCs), from a subtype C HIV-1 infected antiretroviral naive donor. In the present study, by biopanning this recombinant scFv phage library with V3B (subtype B) and V3C (subtype C) peptides, we identified unique cross reactive anti-V3 scFv monoclonals. These scFvs demonstrated cross-neutralizing activity when tested against subtype A, subtype B, and subtype C viruses. Further, molecular modeling of the anti-V3 scFvs with V3C and V3B peptides predicted their sites of interaction with the scFvs, providing insights for future immunogen design studies. A large collection of such monoclonal antibody fragments with diverse epitope specificities can be useful immunotherapeutic reagents along with antiretroviral drugs to prevent HIV-1 infection and disease progression.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Reações Cruzadas , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Antígenos Virais/química , Proteína gp120 do Envelope de HIV/química , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/isolamento & purificação
20.
RNA Biol ; 16(1): 13-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30574830

RESUMO

Long non-coding RNAs have emerged as an important regulatory layer in biological systems. Of the various types of lncRNAs, one class (designated as divergent RNAs/XH), which is in head-to-head overlap with the coding genes, has emerged as a critical biotype that regulates development and cellular differentiation. This work aimed to analyze previously published data on differential expression, epigenetic and network analysis in order to demonstrate the association of divergent lncRNAs, a specific biotype with the differentiation of human neural progenitor cells (hNPCs). We have analyzed various available RNAseq databases that address the neuronal and astrocytic differentiation of hNPCs and identified differentially expressed lncRNAs (DELs) during cell-fate determination. Key DELs identified from the databases were experimentally verified by us in our in-vitro hNPC differentiation system. We also analyzed the change in promoter activity using ChIP-seq datasets of the histone markers H3K4me3 (activation) and H3K27me3 (inactivation) of these DELs. Additionally, we explored the change in the euchromatinization state of DELs (by analyzing DNase-seq data) during lineage-specific differentiation of hNPCs and performed their network analysis. We were able to identify differences between neuronal and astrocytic differentiation of hNPCs at the level of divergent DELs epigenetic markers, DNAase hypersensitive sites and gene expression network. Divergent lncRNAs are more involved in neuronal rather than astrocytic differentiation, while the sense downstream lncRNA biotype appears to be more involved in astrocytic differentiation. By studying the lncRNA involvement of distinct biotypes, we have been able to indicate the preferential role of a particular biotype during lineage-specific differentiation.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Epigênese Genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , RNA Longo não Codificante/genética , Astrócitos/citologia , Astrócitos/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...