Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Dtsch Arztebl Int ; 118(Forthcoming)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33632384

RESUMO

BACKGROUND: Follicular lymphoma (FL) occurs predominantly at advanced age, with an annual incidence of 3-5 cases per 100 000 inhabitants in Western countries. The clinical course is heterogeneous. METHODS: For this new guideline, systematic literature searches were conducted in medical databases (MEDLINE, PubMed Central) (up to November 2017) and in the Guidelines International Network (G-I-N), and recent publications were added. RESULTS: The results of 21 systematic reviews with meta-analyses, 75 randomized controlled trials, and 58 prospective and retrospective studies were evaluated. Lymph-node biopsy is necessary for initial diagnosis of FL. CT scanning of the neck, thorax, and abdomen should be performed to assess how far the disease has spread, together with bone marrow biopsy and, if required, PET/CT. In early FL (stages I and II; 10-15 %), potentially curative radiotherapy combined with an anti-CD 20 antibody is recommended. In advanced disease (stages III and IV), watchful waiting is indicated for patients who have no clinical symptoms and a low tumor burden. Patients with clinical symptoms and/or high tumor burden should receive chemotherapy in combination with an anti-CD 20 antibody, followed by 2 years' maintenance treatment with an anti-CD 20 antibody. CONCLUSION: Given the good long-term prognosis of FL, the treatment must be chosen with care and thorough follow-up is necessary to ensure detection of late sequelae such as second malignancies or organ damage.

2.
Artigo em Alemão | MEDLINE | ID: mdl-33257268

RESUMO

BACKGROUND: When addressing the variable "gender" in health research designs, a distinction is made between biological ("sex") and sociocultural or psychosocial aspects ("gender"). In health research, it is important to avoid systematic errors that may result when gender aspects are inappropriately or not sufficiently addressed (so-called gender bias). A gender bias occurs, for instance, when the presence of gender differences is assumed without empirical evidence or when research data that was generated from samples of male participants is automatically applied to women. Funding institutions can create incentives for researchers to integrate gender-sensitive analyses into their research projects and to consider the potential influence of the "gender" variable. The aim of this study was to explore which explicit requirements concerning gender aspects applicants to German funding institutions in the various health sectors need to meet in their research designs. METHODS: From March to June 2019, we researched funding institutions in the health sector at the German federal level. We examined the funding guidelines of each identified institution in light of their requirements for applicants to take gender aspects into consideration in their research. We explored this in a two-step procedure (online document search and e-mail contact). RESULTS: We examined 18 institutions. Information on the requirements for applicants to address gender aspects in their research projects was identified for four institutions: the German Federal Ministry of Education and Research, the German Federal Ministry of Health, the German Research Foundation, and the Volkswagen Stiftung. In particular, the consideration of gender aspects for planned research projects was used as an evaluation criterion in the institutions' application guidelines available online. If considered relevant for a planned research project, the consideration of gender aspects affects project planning, implementation and evaluation of results. Eight institutions had no such requirements. For the remaining six institutions, we were not able to find any such information, neither by document research nor through e-mail contact. DISCUSSION AND CONCLUSION: Only a few funding institutions in the health sector have so far included requirements regarding the consideration of the "gender" variable in health research in their application guidelines. Furthermore, the funding institutions' requirements are somewhat heterogeneous and need standardization. Funding institutions in the health sector could identify research needs and set new research priorities in order to expand the empirical evidence on gender aspects in the various health sectors and to increase the social benefit of the scientific results obtained. In this way, applicants can be sensitized and encouraged to consider gender aspects in their research projects and, if necessary, to conduct them in a gender-differentiated manner.

3.
Cochrane Database Syst Rev ; 12: CD013020, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270906

RESUMO

BACKGROUND: Different bone-modifying agents like bisphosphonates and receptor activator of nuclear factor-kappa B ligand (RANKL)-inhibitors are used as supportive treatment in men with prostate cancer and bone metastases to prevent skeletal-related events (SREs). SREs such as pathologic fractures, spinal cord compression, surgery and radiotherapy to the bone, and hypercalcemia lead to morbidity, a poor performance status, and impaired quality of life. Efficacy and acceptability of the bone-targeted therapy is therefore of high relevance. Until now recommendations in guidelines on which bone-modifying agents should be used are rare and inconsistent. OBJECTIVES: To assess the effects of bisphosphonates and RANKL-inhibitors as supportive treatment for prostate cancer patients with bone metastases and to generate a clinically meaningful treatment ranking according to their safety and efficacy using network meta-analysis. SEARCH METHODS: We identified studies by electronically searching the bibliographic databases Cochrane Controlled Register of Trials (CENTRAL), MEDLINE, and Embase until 23 March 2020. We searched the Cochrane Library and various trial registries and screened abstracts of conference proceedings and reference lists of identified trials. SELECTION CRITERIA: We included randomized controlled trials comparing different bisphosphonates and RANKL-inihibitors with each other or against no further treatment or placebo for men with prostate cancer and bone metastases. We included men with castration-restrictive and castration-sensitive prostate cancer and conducted subgroup analyses according to this criteria. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the quality of trials. We defined proportion of participants with pain response and the adverse events renal impairment and osteonecrosis of the jaw (ONJ) as the primary outcomes. Secondary outcomes were SREs in total and each separately (see above), mortality, quality of life, and further adverse events such as grade 3 to 4 adverse events, hypocalcemia, fatigue, diarrhea, and nausea. We conducted network meta-analysis and generated treatment rankings for all outcomes, except quality of life due to insufficient reporting on this outcome. We compiled ranking plots to compare single outcomes of efficacy against outcomes of acceptability of the bone-modifying agents. We assessed the certainty of the evidence for the main outcomes using the GRADE approach. MAIN RESULTS: Twenty-five trials fulfilled our inclusion criteria. Twenty-one trials could be considered in the quantitative analysis, of which six bisphosphonates (zoledronic acid, risedronate, pamidronate, alendronate, etidronate, or clodronate) were compared with each other, the RANKL-inhibitor denosumab, or no treatment/placebo. By conducting network meta-analysis we were able to compare all of these reported agents directly and/or indirectly within the network for each outcome. In the abstract only the comparisons of zoledronic acid and denosumab against the main comparator (no treatment/placebo) are described for outcomes that were predefined as most relevant and that also appear in the 'Summary of findings' table. Other results, as well as results of subgroup analyses regarding castration status of participants, are displayed in the Results section of the full text. Treatment with zoledronic acid probably neither reduces nor increases the proportion of participants with pain response when compared to no treatment/placebo (risk ratio (RR) 1.46, 95% confidence interval (CI) 0.93 to 2.32; per 1000 participants 121 more (19 less to 349 more); moderate-certainty evidence; network based on 4 trials including 1013 participants). For this outcome none of the trials reported results for the comparison with denosumab. The adverse event renal impairment probably occurs more often when treated with zoledronic acid compared to treatment/placebo (RR 1.63, 95% CI 1.08 to 2.45; per 1000 participants 78 more (10 more to 180 more); moderate-certainty evidence; network based on 6 trials including 1769 participants). Results for denosumab could not be included for this outcome, since zero events cannot be considered in the network meta-analysis, therefore it does not appear in the ranking. Treatment with denosumab results in increased occurrence of the adverse event ONJ (RR 3.45, 95% CI 1.06 to 11.24; per 1000 participants 30 more (1 more to 125 more); high-certainty evidence; 4 trials, 3006 participants) compared to no treatment/placebo. When comparing zoledronic acid to no treatment/placebo, the confidence intervals include the possibility of benefit or harm, therefore treatment with zoledronic acid probably neither reduces nor increases ONJ (RR 1.88, 95% CI 0.73 to 4.87; per 1000 participants 11 more (3 less to 47 more); moderate-certainty evidence; network based on 4 trials including 3006 participants). Compared to no treatment/placebo, treatment with zoledronic acid (RR 0.84, 95% CI 0.72 to 0.97) and denosumab (RR 0.72, 95% CI 0.54 to 0.96) may result in a reduction of the total number of SREs (per 1000 participants 75 fewer (131 fewer to 14 fewer) and 131 fewer (215 fewer to 19 fewer); both low-certainty evidence; 12 trials, 5240 participants). Treatment with zoledronic acid and denosumab likely neither reduces nor increases mortality when compared to no treatment/placebo (zoledronic acid RR 0.90, 95% CI 0.80 to 1.01; per 1000 participants 48 fewer (97 fewer to 5 more); denosumab RR 0.93, 95% CI 0.77 to 1.11; per 1000 participants 34 fewer (111 fewer to 54 more); both moderate-certainty evidence; 13 trials, 5494 participants). Due to insufficient reporting, no network meta-analysis was possible for the outcome quality of life. One study with 1904 participants comparing zoledronic acid and denosumab showed that more zoledronic acid-treated participants than denosumab-treated participants experienced a greater than or equal to five-point decrease in Functional Assessment of Cancer Therapy-General total scores over a range of 18 months (average relative difference = 6.8%, range -9.4% to 14.6%) or worsening of cancer-related quality of life. AUTHORS' CONCLUSIONS: When considering bone-modifying agents as supportive treatment, one has to balance between efficacy and acceptability. Results suggest that Zoledronic acid likely increases both the proportion of participants with pain response, and the proportion of participants experiencing adverse events However, more trials with head-to-head comparisons including all potential agents are needed to draw the whole picture and proof the results of this analysis.

4.
Front Aging Neurosci ; 12: 575804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173503

RESUMO

Background: Research on predictors of working memory training responsiveness, which could help tailor cognitive interventions individually, is a timely topic in healthy aging. However, the findings are highly heterogeneous, reporting partly conflicting results following a broad spectrum of methodological approaches to answer the question "who benefits most" from working memory training. Objective: The present systematic review aimed to systematically investigate prognostic factors and models for working memory training responsiveness in healthy older adults. Method: Four online databases were searched up to October 2019 (MEDLINE Ovid, Web of Science, CENTRAL, and PsycINFO). The inclusion criteria for full texts were publication in a peer-reviewed journal in English/German, inclusion of healthy older individuals aged ≥55 years without any neurological and/or psychiatric diseases including cognitive impairment, and the investigation of prognostic factors and/or models for training responsiveness after targeted working memory training in terms of direct training effects, near-transfer effects to verbal and visuospatial working memory as well as far-transfer effects to other cognitive domains and behavioral variables. The study design was not limited to randomized controlled trials. Results: A total of 16 studies including n = 675 healthy older individuals with a mean age of 63.0-86.8 years were included in this review. Within these studies, five prognostic model approaches and 18 factor finding approaches were reported. Risk of bias was assessed using the Quality in Prognosis Studies checklist, indicating that important information, especially regarding the domains study attrition, study confounding, and statistical analysis and reporting, was lacking throughout many of the investigated studies. Age, education, intelligence, and baseline performance in working memory or other cognitive domains were frequently investigated predictors across studies. Conclusions: Given the methodological shortcomings of the included studies, no clear conclusions can be drawn, and emerging patterns of prognostic effects will have to survive sound methodological replication in future attempts to promote precision medicine approaches in the context of working memory training. Methodological considerations are discussed, and our findings are embedded to the cognitive aging literature, considering, for example, the cognitive reserve framework and the compensation vs. magnification account. The need for personalized cognitive prevention and intervention methods to counteract cognitive decline in the aging population is high and the potential enormous. Registration: PROSPERO, ID CRD42019142750.

5.
J Clin Epidemiol ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007458

RESUMO

OBJECTIVES: To provide Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) guidance for the consideration of study limitations (risk of bias) due to missing participant outcome data for time-to-event outcomes in intervention studies. STUDY DESIGN AND SETTING: We developed this guidance through an iterative process that included membership consultation, feedback, presentation, and iterative discussion at meetings of the GRADE working group. RESULTS: The GRADE working group has published guidance on how to account for missing participant outcome data in binary and continuous outcomes. When analyzing time-to-event outcomes (e.g., overall survival and time-to-treatment failure) data of participants for whom the outcome of interest (e.g., death and relapse) has not been observed are dealt with through censoring. To do so, standard methods require that censored individuals are representative for those remaining in the study. Two types of censoring can be distinguished, end of study censoring and censoring because of missing data, commonly named loss to follow-up censoring. However, both types are not distinguishable with the usual information on censoring available to review authors. Dealing with individuals for whom data are missing during follow-up in the same way as individuals for whom full follow-up is available at the end of the study increases the risk of bias. Considerable differences in the treatment arms in the distribution of censoring over time (early versus late censoring), the overall degree of missing follow-up data, and the reasons why individuals were lost to follow-up may reduce the certainty in the study results. With often only very limited data available, review and guideline authors are required to make transparent and well-considered judgments when judging risk of bias of individual studies and then come to an overall grading decision for the entire body of evidence. CONCLUSION: Concern for risk of bias resulting from censoring of participants for whom follow-up data are missing in the underlying studies of a body of evidence can be expressed in the study limitations (risk of bias) domain of the GRADE approach.

6.
J Clin Epidemiol ; 129: 1-11, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33010401

RESUMO

OBJECTIVES: The aim of this study is to propose an approach for developing trustworthy recommendations as part of urgent responses (1-2 week) in the clinical, public health, and health systems fields. STUDY DESIGN AND SETTING: We conducted a review of the literature, outlined a draft approach, refined the concept through iterative discussions, a workshop by the Grading of Recommendations Assessment, Development and Evaluation Rapid Guidelines project group, and obtained feedback from the larger Grading of Recommendations Assessment, Development and Evaluation working group. RESULTS: A request for developing recommendations within 2 week is the usual trigger for an urgent response. Although the approach builds on the general principles of trustworthy guideline development, we highlight the following steps: (1) assess the level of urgency; (2) assess feasibility; (3) set up the organizational logistics; (4) specify the question(s); (5) collect the information needed; (6) assess the adequacy of identified information; (7) develop the recommendations using one of the 4 potential approaches: adopt existing recommendations, adapt existing recommendations, develop new recommendations using existing adequate systematic review, or develop new recommendations using expert panel input; and (8) consider an updating plan. CONCLUSION: An urgent response for developing recommendations requires building a cohesive, skilled, and highly motivated multidisciplinary team with the necessary clinical, scientific, and methodological expertise; adapting to shifting needs; complying with the principles of transparency; and properly managing conflicts of interest.

7.
Cochrane Database Syst Rev ; 10: CD013600, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044747

RESUMO

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 19 August 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' 2.0 tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, mortality (time to event), improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events (AEs), and serious adverse events (SAEs). MAIN RESULTS: This is the second living update of our review. We included 19 studies (2 RCTs, 8 controlled NRSIs, 9 non-controlled NRSIs) with 38,160 participants, of whom 36,081 received convalescent plasma. Two completed RCTs are awaiting assessment (published after 19 August 2020). We identified a further 138 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 73 are randomised (3 reported in a study registry as already being completed, but without results). We did not identify any completed studies evaluating hyperimmune immunoglobulin. We did not include data from controlled NRSIs in data synthesis because of critical risk of bias. The overall certainty of evidence was low to very low, due to study limitations and results including both potential benefits and harms.  Effectiveness of convalescent plasma for people with COVID-19  We included results from two RCTs (both stopped early) with 189 participants, of whom 95 received convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. We are uncertain whether convalescent plasma decreases all-cause mortality at hospital discharge (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.22 to 1.34; 1 RCT, 86 participants; low-certainty evidence).  We are uncertain whether convalescent plasma decreases mortality (time to event) (hazard ratio (HR) 0.64, 95% CI 0.33 to 1.25; 2 RCTs, 189 participants; low-certainty evidence). Convalescent plasma may result in little to no difference in improvement of clinical symptoms (i.e. need for respiratory support) at seven days (RR 0.98, 95% CI 0.30 to 3.19; 1 RCT, 103 participants; low-certainty evidence). Convalescent plasma may increase improvement of clinical symptoms at up to 15 days (RR 1.34, 95% CI 0.85 to 2.11; 2 RCTs, 189 participants; low-certainty evidence), and at up to 30 days (RR 1.13, 95% CI 0.88 to 1.43; 2 studies, 188 participants; low-certainty evidence).  No studies reported on quality of life.  Safety of convalescent plasma for people with COVID-19 We included results from two RCTs, eight controlled NRSIs and nine non-controlled NRSIs assessing safety of convalescent plasma. Reporting of safety data and duration of follow-up was variable. The controlled studies reported on AEs and SAEs only in participants receiving convalescent plasma. Some, but not all, studies included death as a SAE.  The studies did not report the grade of AEs. Fourteen studies (566 participants) reported on AEs of possible grade 3 or 4 severity. The majority of these AEs were allergic or respiratory events. We are very uncertain whether convalescent plasma therapy affects the risk of moderate to severe AEs (very low-certainty evidence).  17 studies (35,944 participants) assessed SAEs for 20,622 of its participants. The majority of participants were from one non-controlled NRSI (20,000 participants), which reported on SAEs within the first four hours and within an additional seven days after transfusion. There were 63 deaths, 12 were possibly and one was probably related to transfusion. There were 146 SAEs within four hours and 1136 SAEs within seven days post-transfusion. These were predominantly allergic or respiratory, thrombotic or thromboembolic and cardiac events. We are uncertain whether convalescent plasma therapy results in a clinically relevant increased risk of SAEs (low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. There was limited information regarding grade 3 and 4 AEs to determine the effect of convalescent plasma therapy on clinically relevant SAEs. In the absence of a control group, we are unable to assess the relative safety of convalescent plasma therapy.  While major efforts to conduct research on COVID-19 are being made, recruiting the anticipated number of participants into these studies is problematic. The early termination of the first two RCTs investigating convalescent plasma, and the lack of data from 20 studies that have completed or were due to complete at the time of this update illustrate these challenges. Well-designed studies should be prioritised. Moreover, studies should report outcomes in the same way, and should consider the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 138 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 73 are RCTs (three already completed). This is the second living update of the review, and we will continue to update this review periodically. Future updates may show different results to those reported here.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Viés , Causas de Morte , Infecções por Coronavirus/mortalidade , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/métodos , Imunização Passiva/estatística & dados numéricos , Ensaios Clínicos Controlados não Aleatórios como Assunto/estatística & dados numéricos , Pandemias , Pneumonia Viral/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Resultado do Tratamento
8.
Cochrane Database Syst Rev ; 7: CD012022, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735048

RESUMO

BACKGROUND: Chronic lymphocytic leukaemia (CLL) is the most common cancer of the lymphatic system in Western countries. Several clinical and biological factors for CLL have been identified. However, it remains unclear which of the available prognostic models combining those factors can be used in clinical practice to predict long-term outcome in people newly-diagnosed with CLL. OBJECTIVES: To identify, describe and appraise all prognostic models developed to predict overall survival (OS), progression-free survival (PFS) or treatment-free survival (TFS) in newly-diagnosed (previously untreated) adults with CLL, and meta-analyse their predictive performances. SEARCH METHODS: We searched MEDLINE (from January 1950 to June 2019 via Ovid), Embase (from 1974 to June 2019) and registries of ongoing trials (to 5 March 2020) for development and validation studies of prognostic models for untreated adults with CLL. In addition, we screened the reference lists and citation indices of included studies. SELECTION CRITERIA: We included all prognostic models developed for CLL which predict OS, PFS, or TFS, provided they combined prognostic factors known before treatment initiation, and any studies that tested the performance of these models in individuals other than the ones included in model development (i.e. 'external model validation studies'). We included studies of adults with confirmed B-cell CLL who had not received treatment prior to the start of the study. We did not restrict the search based on study design. DATA COLLECTION AND ANALYSIS: We developed a data extraction form to collect information based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Independent pairs of review authors screened references, extracted data and assessed risk of bias according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST). For models that were externally validated at least three times, we aimed to perform a quantitative meta-analysis of their predictive performance, notably their calibration (proportion of people predicted to experience the outcome who do so) and discrimination (ability to differentiate between people with and without the event) using a random-effects model. When a model categorised individuals into risk categories, we pooled outcome frequencies per risk group (low, intermediate, high and very high). We did not apply GRADE as guidance is not yet available for reviews of prognostic models. MAIN RESULTS: From 52 eligible studies, we identified 12 externally validated models: six were developed for OS, one for PFS and five for TFS. In general, reporting of the studies was poor, especially predictive performance measures for calibration and discrimination; but also basic information, such as eligibility criteria and the recruitment period of participants was often missing. We rated almost all studies at high or unclear risk of bias according to PROBAST. Overall, the applicability of the models and their validation studies was low or unclear; the most common reasons were inappropriate handling of missing data and serious reporting deficiencies concerning eligibility criteria, recruitment period, observation time and prediction performance measures. We report the results for three models predicting OS, which had available data from more than three external validation studies: CLL International Prognostic Index (CLL-IPI) This score includes five prognostic factors: age, clinical stage, IgHV mutational status, B2-microglobulin and TP53 status. Calibration: for the low-, intermediate- and high-risk groups, the pooled five-year survival per risk group from validation studies corresponded to the frequencies observed in the model development study. In the very high-risk group, predicted survival from CLL-IPI was lower than observed from external validation studies. Discrimination: the pooled c-statistic of seven external validation studies (3307 participants, 917 events) was 0.72 (95% confidence interval (CI) 0.67 to 0.77). The 95% prediction interval (PI) of this model for the c-statistic, which describes the expected interval for the model's discriminative ability in a new external validation study, ranged from 0.59 to 0.83. Barcelona-Brno score Aimed at simplifying the CLL-IPI, this score includes three prognostic factors: IgHV mutational status, del(17p) and del(11q). Calibration: for the low- and intermediate-risk group, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of four external validation studies (1755 participants, 416 events) was 0.64 (95% CI 0.60 to 0.67); 95% PI 0.59 to 0.68. MDACC 2007 index score The authors presented two versions of this model including six prognostic factors to predict OS: age, B2-microglobulin, absolute lymphocyte count, gender, clinical stage and number of nodal groups. Only one validation study was available for the more comprehensive version of the model, a formula with a nomogram, while seven studies (5127 participants, 994 events) validated the simplified version of the model, the index score. Calibration: for the low- and intermediate-risk groups, the pooled survival per risk group corresponded to the frequencies observed in the model development study, although the score seems to overestimate survival for the high-risk group. Discrimination: the pooled c-statistic of the seven external validation studies for the index score was 0.65 (95% CI 0.60 to 0.70); 95% PI 0.51 to 0.77. AUTHORS' CONCLUSIONS: Despite the large number of published studies of prognostic models for OS, PFS or TFS for newly-diagnosed, untreated adults with CLL, only a minority of these (N = 12) have been externally validated for their respective primary outcome. Three models have undergone sufficient external validation to enable meta-analysis of the model's ability to predict survival outcomes. Lack of reporting prevented us from summarising calibration as recommended. Of the three models, the CLL-IPI shows the best discrimination, despite overestimation. However, performance of the models may change for individuals with CLL who receive improved treatment options, as the models included in this review were tested mostly on retrospective cohorts receiving a traditional treatment regimen. In conclusion, this review shows a clear need to improve the conducting and reporting of both prognostic model development and external validation studies. For prognostic models to be used as tools in clinical practice, the development of the models (and their subsequent validation studies) should adapt to include the latest therapy options to accurately predict performance. Adaptations should be timely.


Assuntos
Leucemia Linfocítica Crônica de Células B/mortalidade , Modelos Teóricos , Adulto , Fatores Etários , Viés , Biomarcadores Tumorais , Calibragem , Intervalos de Confiança , Análise Discriminante , Intervalo Livre de Doença , Feminino , Genes p53/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Receptores de Antígenos de Linfócitos B/genética , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética
9.
Gesundheitswesen ; 82(8-09): e108-e121, 2020 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-32858754

RESUMO

Health services research in oncology deals with all situations which cancer patients face. It looks at the different phases of care, i. e. prevention / early detection, prehabilitation, diagnostics, therapy, rehabilitation and palliative care as well as the various actors, including those affected, the carers and self-help. It deals with healthy people (e. g. in the context of prevention / early detection), patients and cancer survivors. Due to the nature of cancer and the existing care structures, there are a number of specific contents for health services research in oncology compared to general health services research while the methods remain essentially identical. This memorandum describes the subject, illustrates the care structures and identifies areas of health services research in oncology. This memorandum has been prepared by the Oncology Section of the German Network for Health Services Research and is the result of intensive discussions.


Assuntos
Pesquisa sobre Serviços de Saúde , Oncologia , Medicina , Alemanha , Humanos , Cuidados Paliativos
10.
Cochrane Database Syst Rev ; 7: CD013600, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648959

RESUMO

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS: We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020. SELECTION CRITERIA: We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs.  MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19  We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome.  Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event.  Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence).  Serious adverse events (14 studies, 5201 participants)  Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events. AUTHORS' CONCLUSIONS: We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19.  While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms.  There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Causas de Morte , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Término Precoce de Ensaios Clínicos , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/métodos , Imunização Passiva/mortalidade , Imunização Passiva/estatística & dados numéricos , Ensaios Clínicos Controlados não Aleatórios como Assunto/mortalidade , Ensaios Clínicos Controlados não Aleatórios como Assunto/estatística & dados numéricos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Respiração Artificial/estatística & dados numéricos , Viés de Seleção , Índice de Gravidade de Doença , Resultado do Tratamento
11.
Diagn Progn Res ; 4: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478173

RESUMO

Background: The goal is to investigate prognostic factors for change in memory test performance in healthy older adults and to report and discuss the different statistical procedures used for investigating this topic in the literature. Methods: Prognostic factors were here understood as any measures that were investigated to estimate change in memory test performance. MEDLINE, Web of Science Core Collection, CENTRAL, and PsycInfo were searched up to November 2019. Prognostic factor and prognostic factor finding studies investigating prognostic factors on verbal and non-verbal short- and long-term memory after conducting memory training in healthy older adults were included. Risk of bias was assessed using the QUIPS tool. Results: Our search yielded 12,974 results. We included 29 studies that address prognostic factors of change in memory test performance, including sociodemographic, (neuro-)psychological, genetic, and biological parameters. Studies showed high variation and methodological shortcomings with regard to the assessment, statistical evaluation, and reporting of the investigated prognostic factors. Included studies used different types of dependent variables (change scores vs. post-test scores) when defining change in memory test performance leading to contradictory results. Age was the only variable investigated throughout most of the studies, showing that older adults benefit more from training when using the change score as the dependent variable. Conclusion: Overall, there is a need for adequate reporting in studies of prognostic factors for change in memory test performance. Because of inconsistencies and methodological shortcomings in the literature, conclusions regarding prognostic factors remain uncertain. As a tentative conclusion, one may say that the higher the age of the participant, the more profound the improvement in memory test performance will be after memory training. Trial registration: CRD42019127479.

12.
Cochrane Database Syst Rev ; 5: CD013600, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32406927

RESUMO

BACKGROUND: Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required.  OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19. SEARCH METHODS: The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53  We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs). SELECTION CRITERIA: We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins. DATA COLLECTION AND ANALYSIS: We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events.  MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence).  Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy.  Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events  The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence).  AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.


Assuntos
Infecções por Coronavirus , Imunoglobulinas , Pacientes Internados , Pandemias , Pneumonia Viral , Betacoronavirus , Infecções por Coronavirus/terapia , Cuidados Críticos , Estado Terminal , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/métodos , Imunoglobulinas/uso terapêutico , Pneumonia Viral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , Índice de Gravidade de Doença , Resultado do Tratamento
13.
BMJ ; 369: m1328, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265220

RESUMO

OBJECTIVE: To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of becoming infected with covid-19 or being admitted to hospital with the disease. DESIGN: Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES: PubMed and Embase through Ovid, arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION: Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION: At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS: 14 217 titles were screened, and 107 studies describing 145 prediction models were included. The review identified four models for identifying people at risk in the general population; 91 diagnostic models for detecting covid-19 (60 were based on medical imaging, nine to diagnose disease severity); and 50 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequently reported predictors of diagnosis and prognosis of covid-19 are age, body temperature, lymphocyte count, and lung imaging features. Flu-like symptoms and neutrophil count are frequently predictive in diagnostic models, while comorbidities, sex, C reactive protein, and creatinine are frequent prognostic factors. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.68 to 0.99 in prognostic models. All models were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and vague reporting. Most reports did not include any description of the study population or intended use of the models, and calibration of the model predictions was rarely assessed. CONCLUSION: Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. Hence, we do not recommend any of these reported prediction models for use in current practice. Immediate sharing of well documented individual participant data from covid-19 studies and collaboration are urgently needed to develop more rigorous prediction models, and validate promising ones. The predictors identified in included models should be considered as candidate predictors for new models. Methodological guidance should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, studies should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION: Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 2 of the original article published on 7 April 2020 (BMJ 2020;369:m1328), and previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp).


Assuntos
Infecções por Coronavirus/diagnóstico , Modelos Teóricos , Pneumonia Viral/diagnóstico , Coronavirus , Progressão da Doença , Hospitalização/estatística & dados numéricos , Humanos , Análise Multivariada , Pandemias , Prognóstico
14.
Artigo em Inglês | MEDLINE | ID: mdl-32218279

RESUMO

Health literacy can be described as a complex process shaped by individual resources and preferences and by the nature and quality of health-related information people encounter. The main objective of this study was to explore the views of health care professionals on how gender as a personal determinant of health literacy affected their interactions with migrant patients. The interrelated challenges, needs and applied solutions were analyzed from a health literacy perspective. Five focus group discussions with health care professionals working with migrants (n = 31) were conducted in Cologne, Germany, audio recorded, transcribed and analyzed by qualitative content analysis. Gender-specific aspects, such as the gender of health care providers as a factor, were portrayed above all in relation to patients from Turkey and Arab countries regarding access to and understanding of health-related information. These statements exclusively represent the possibly biased or assumptions-based perspectives of health care professionals on their migrant patients and were made against the background of a systemic lack of time and the challenge of overcoming language barriers. Especially in this context, reducing time pressure and improving communication in the treatment setting may be to the benefit of all actors within healthcare.


Assuntos
Letramento em Saúde , Pessoal de Saúde , Relações Profissional-Paciente , Migrantes , Feminino , Alemanha , Letramento em Saúde/estatística & dados numéricos , Pessoal de Saúde/estatística & dados numéricos , Acesso aos Serviços de Saúde , Humanos , Masculino , Pesquisa Qualitativa , Fatores Sexuais , Turquia
15.
Cochrane Database Syst Rev ; 1: CD012643, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31930780

RESUMO

BACKGROUND: Hodgkin lymphoma (HL) is one of the most common haematological malignancies in young adults and, with cure rates of 90%, has become curable for the majority of individuals. Positron emission tomography (PET) is an imaging tool used to monitor a tumour's metabolic activity, stage and progression. Interim PET during chemotherapy has been posited as a prognostic factor in individuals with HL to distinguish between those with a poor prognosis and those with a better prognosis. This distinction is important to inform decision-making on the clinical pathway of individuals with HL. OBJECTIVES: To determine whether in previously untreated adults with HL receiving first-line therapy, interim PET scan results can distinguish between those with a poor prognosis and those with a better prognosis, and thereby predict survival outcomes in each group. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL and conference proceedings up until April 2019. We also searched one trial registry (ClinicalTrials.gov). SELECTION CRITERIA: We included retrospective and prospective studies evaluating interim PET scans in a minimum of 10 individuals with HL (all stages) undergoing first-line therapy. Interim PET was defined as conducted during therapy (after one, two, three or four treatment cycles). The minimum follow-up period was at least 12 months. We excluded studies if the trial design allowed treatment modification based on the interim PET scan results. DATA COLLECTION AND ANALYSIS: We developed a data extraction form according to the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Two teams of two review authors independently screened the studies, extracted data on overall survival (OS), progression-free survival (PFS) and PET-associated adverse events (AEs), assessed risk of bias (per outcome) according to the Quality in Prognosis Studies (QUIPS) tool, and assessed the certainty of the evidence (GRADE). We contacted investigators to obtain missing information and data. MAIN RESULTS: Our literature search yielded 11,277 results. In total, we included 23 studies (99 references) with 7335 newly-diagnosed individuals with classic HL (all stages). Participants in 16 studies underwent (interim) PET combined with computed tomography (PET-CT), compared to PET only in the remaining seven studies. The standard chemotherapy regimen included ABVD (16) studies, compared to BEACOPP or other regimens (seven studies). Most studies (N = 21) conducted interim PET scans after two cycles (PET2) of chemotherapy, although PET1, PET3 and PET4 were also reported in some studies. In the meta-analyses, we used PET2 data if available as we wanted to ensure homogeneity between studies. In most studies interim PET scan results were evaluated according to the Deauville 5-point scale (N = 12). Eight studies were not included in meta-analyses due to missing information and/or data; results were reported narratively. For the remaining studies, we pooled the unadjusted hazard ratio (HR). The timing of the outcome measurement was after two or three years (the median follow-up time ranged from 22 to 65 months) in the pooled studies. Eight studies explored the independent prognostic ability of interim PET by adjusting for other established prognostic factors (e.g. disease stage, B symptoms). We did not pool the results because the multivariable analyses adjusted for a different set of factors in each study. Overall survival Twelve (out of 23) studies reported OS. Six of these were assessed as low risk of bias in all of the first four domains of QUIPS (study participation, study attrition, prognostic factor measurement and outcome measurement). The other six studies were assessed as unclear, moderate or high risk of bias in at least one of these four domains. Four studies were assessed as low risk, and eight studies as high risk of bias for the domain other prognostic factors (covariates). Nine studies were assessed as low risk, and three studies as high risk of bias for the domain 'statistical analysis and reporting'. We pooled nine studies with 1802 participants. Participants with HL who have a negative interim PET scan result probably have a large advantage in OS compared to those with a positive interim PET scan result (unadjusted HR 5.09, 95% confidence interval (CI) 2.64 to 9.81, I² = 44%, moderate-certainty evidence). In absolute values, this means that 900 out of 1000 participants with a negative interim PET scan result will probably survive longer than three years compared to 585 (95% CI 356 to 757) out of 1000 participants with a positive result. Adjusted results from two studies also indicate an independent prognostic value of interim PET scan results (moderate-certainty evidence). Progression-free survival Twenty-one studies reported PFS. Eleven out of 21 were assessed as low risk of bias in the first four domains. The remaining were assessed as unclear, moderate or high risk of bias in at least one of the four domains. Eleven studies were assessed as low risk, and ten studies as high risk of bias for the domain other prognostic factors (covariates). Eight studies were assessed as high risk, thirteen as low risk of bias for statistical analysis and reporting. We pooled 14 studies with 2079 participants. Participants who have a negative interim PET scan result may have an advantage in PFS compared to those with a positive interim PET scan result, but the evidence is very uncertain (unadjusted HR 4.90, 95% CI 3.47 to 6.90, I² = 45%, very low-certainty evidence). This means that 850 out of 1000 participants with a negative interim PET scan result may be progression-free longer than three years compared to 451 (95% CI 326 to 569) out of 1000 participants with a positive result. Adjusted results (not pooled) from eight studies also indicate that there may be an independent prognostic value of interim PET scan results (low-certainty evidence). PET-associated adverse events No study measured PET-associated AEs. AUTHORS' CONCLUSIONS: This review provides moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict progression-free survival in treated individuals with HL. This evidence is primarily based on unadjusted data. More studies are needed to test the adjusted prognostic ability of interim PET against established prognostic factors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doença de Hodgkin/tratamento farmacológico , Tomografia Computadorizada com Tomografia por Emissão de Pósitrons/métodos , Quimiorradioterapia , Tomada de Decisões , Progressão da Doença , Intervalo Livre de Doença , Humanos , Prognóstico , Adulto Jovem
16.
J Clin Epidemiol ; 118: 124-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711910

RESUMO

OBJECTIVES: To provide GRADE guidance on how to prepare Summary of Findings tables and Evidence Profiles for time-to-event outcomes with a focus on the calculation of the corresponding absolute effect estimates. STUDY DESIGN AND SETTING: This guidance was justified by a research project identifying frequent errors and limitations in the presentation of time-to-event outcomes in the Summary of Findings tables. We developed this guidance through an iterative process that included membership consultation, feedback, presentation, and discussion at meetings of the GRADE Working Group. RESULTS: Review authors need to carefully consider the definition of the outcome of interest; although often the event is used as label for the outcome of interest (e.g., death or mortality), the event-free survival (e.g., overall survival) is reported throughout individual studies. Review authors should calculate the absolute effect correctly, either for the event or absence of the event. We also provide examples on how to calculate the absolute effects for events and the absence of events for various baseline or control group risks and time points. CONCLUSIONS: This article aids in the development of Summary of Findings tables and Evidence Profiles, including time-to-event outcomes, and addresses the most common scenarios when calculating absolute effects in order to provide an accurate interpretation.


Assuntos
Determinação de Ponto Final/normas , Relatório de Pesquisa/normas , Coleta de Dados/normas , Interpretação Estatística de Dados , Medicina Baseada em Evidências , Guias como Assunto , Humanos , Revisões Sistemáticas como Assunto
17.
J Clin Epidemiol ; 119: 126-135, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31711912

RESUMO

OBJECTIVES: Clear communication of systematic review findings will help readers and decision makers. We built on previous work to develop an approach that improves the clarity of statements to convey findings and that draws on Grading of Recommendations Assessment, Development and Evaluation (GRADE). STUDY DESIGN AND SETTING: We conducted workshops including 80 attendants and a survey of 110 producers and users of systematic reviews. We calculated acceptability of statements and revised the wording of those that were unacceptable to ≥40% of participants. RESULTS: Most participants agreed statements should be based on size of effect and certainty of evidence. Statements for low, moderate and high certainty evidence were acceptable to >60%. Key guidance, for example, includes statements for high, moderate and low certainty for a large effect on intervention x as: x results in a large reduction…; x likely results in a large reduction…; x may result in a large reduction…, respectively. CONCLUSIONS: Producers and users of systematic reviews found statements to communicate findings combining size and certainty of an effect acceptable. This article provides GRADE guidance and a wording template to formulate statements in systematic reviews and other decision tools.


Assuntos
Guias como Assunto , Comunicação em Saúde , Revisões Sistemáticas como Assunto , Humanos
18.
Cochrane Database Syst Rev ; 2019(11)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31765002

RESUMO

BACKGROUND: Multiple myeloma is a bone marrow-based hematological malignancy accounting for approximately two per cent of cancers. First-line treatment for transplant-ineligible individuals consists of multiple drug combinations of bortezomib (V), lenalidomide (R), or thalidomide (T). However, access to these medicines is restricted in many countries worldwide. OBJECTIVES: To assess and compare the effectiveness and safety of multiple drug combinations of V, R, and T for adults with newly diagnosed transplant-ineligible multiple myeloma and to inform an application for the inclusion of these medicines into the World Health Organization's (WHO) list of essential medicines. SEARCH METHODS: We searched CENTRAL and MEDLINE, conference proceedings and study registries on 14 February 2019 for randomised controlled trials (RCTs) comparing multiple drug combinations of V, R and T for adults with newly diagnosed transplant-ineligible multiple myeloma. SELECTION CRITERIA: We included RCTs comparing combination therapies of V, R, and T, plus melphalan and prednisone (MP) or dexamethasone (D) for first-line treatment of adults with transplant-ineligible multiple myeloma. We excluded trials including adults with relapsed or refractory disease, trials comparing drug therapies to other types of therapy and trials including second-generation novel agents. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias of included trials. As effect measures we used hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) and risk ratios (RRs) for adverse events. An HR or RR < 1 indicates an advantage for the intervention compared to the main comparator MP. Where available, we extracted quality of life (QoL) data (scores of standardised questionnaires). Results quoted are from network meta-analysis (NMA) unless stated. MAIN RESULTS: We included 25 studies (148 references) comprising 11,403 participants and 21 treatment regimens. Treatments were differentiated between restricted treatment duration (treatment with a pre-specified amount of cycles) and continuous therapy (treatment administered until disease progression, the person becomes intolerant to the drug, or treatment given for a prolonged period). Continuous therapies are indicated with a "c". Risk of bias was generally high across studies due to the open-label study design. Overall survival (OS) Evidence suggests that treatment with RD (HR 0.63 (95% confidence interval (CI) 0.40 to 0.99), median OS 55.2 months (35.2 to 87.0)); TMP (HR 0.75 (95% CI 0.58 to 0.97), median OS: 46.4 months (35.9 to 60.0)); and VRDc (HR 0.49 (95% CI 0.26 to 0.92), median OS 71.0 months (37.8 to 133.8)) probably increases survival compared to median reported OS of 34.8 months with MP (moderate certainty). Treatment with VMP may result in a large increase in OS, compared to MP (HR 0.70 (95% CI 0.45 to 1.07), median OS 49.7 months (32.5 to 77.3)), low certainty). Progression-free survival (PFS) Treatment withRD (HR 0.65 (95% CI0.44 to 0.96), median PFS: 24.9 months (16.9 to 36.8)); TMP (HR 0.63 (95% CI 0.50 to 0.78), median PFS:25.7 months (20.8 to 32.4)); VMP (HR 0.56 (95% CI 0.35 to 0.90), median PFS: 28.9 months (18.0 to 46.3)); and VRDc (HR 0.34 (95% CI 0.20 to 0.58), median PFS: 47.6 months (27.9 to 81.0)) may result in a large increase in PFS (low certainty) compared to MP (median reported PFS: 16.2 months). Adverse events The risk of polyneuropathies may be lower with RD compared to treatment with MP (RR 0.57 (95% CI 0.16 to 1.99), risk for RD: 0.5% (0.1 to 1.8), mean reported risk for MP: 0.9% (10 of 1074 patients affected), low certainty). However, the CIs are also compatible with no difference or an increase in neuropathies. Treatment with TMP (RR 4.44 (95% CI1.77 to 11.11), risk: 4.0% (1.6 to 10.0)) and VMP (RR 88.22 (95% CI 5.36 to 1451.11), risk: 79.4% (4.8 to 1306.0)) probably results in a large increase in polyneuropathies compared to MP (moderate certainty). No study reported the amount of participants with grade ≥ 3 polyneuropathies for treatment with VRDc. VMP probably increases the proportion of participants with serious adverse events (SAEs) compared to MP (RR 1.28 (95% CI 1.06 to 1.54), risk for VMP: 46.2% (38.3 to 55.6), mean risk for MP: 36.1% (177 of 490 patients affected), moderate certainty). RD, TMP, and VRDc were not connected to MP in the network and the risk of SAEs could not be compared. Treatment with RD (RR 4.18 (95% CI 2.13 to 8.20), NMA-risk: 38.5% (19.6 to 75.4)); and TMP (RR 4.10 (95% CI 2.40 to 7.01), risk: 37.7% (22.1 to 64.5)) results in a large increase of withdrawals from the trial due to adverse events (high certainty) compared to MP (mean reported risk: 9.2% (77 of 837 patients withdrew)). The risk is probably slightly increased with VMP (RR 1.06 (95% CI 0.63 to 1.81), risk: 9.75% (5.8 to 16.7), moderate certainty), while it is much increased with VRDc (RR 8.92 (95% CI 3.82 to 20.84), risk: 82.1% (35.1 to 191.7), high certainty) compared to MP. Quality of life QoL was reported in four studies for seven different treatment regimens (MP, MPc, RD, RMP, RMPc, TMP, TMPc) and was measured with four different tools. Assessment and reporting differed between studies and could not be meta-analysed. However, all studies reported an improvement of QoL after initiation of anti-myeloma treatment for all assessed treatment regimens. AUTHORS' CONCLUSIONS: Based on our four pre-selected comparisons of interest, continuous treatment with VRD had the largest survival benefit compared with MP, while RD and TMP also probably considerably increase survival. However, treatment combinations of V, R, and T also substantially increase the incidence of AEs, and lead to a higher risk of treatment discontinuation. Their effectiveness and safety profiles may best be analysed in further randomised head-to-head trials. Further trials should focus on consistent reporting of safety outcomes and should use a standardised instrument to evaluate QoL to ensure comparability of treatment-combinations.


Assuntos
Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/uso terapêutico , Humanos , Lenalidomida/uso terapêutico , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Talidomida/uso terapêutico
19.
Cochrane Database Syst Rev ; 9: CD012643, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31525824

RESUMO

BACKGROUND: Hodgkin lymphoma (HL) is one of the most common haematological malignancies in young adults and, with cure rates of 90%, has become curable for the majority of individuals. Positron emission tomography (PET) is an imaging tool used to monitor a tumour's metabolic activity, stage and progression. Interim PET during chemotherapy has been posited as a prognostic factor in individuals with HL to distinguish between those with a poor prognosis and those with a better prognosis. This distinction is important to inform decision-making on the clinical pathway of individuals with HL. OBJECTIVES: To determine whether in previously untreated adults with HL receiving first-line therapy, interim PET scan results can distinguish between those with a poor prognosis and those with a better prognosis, and thereby predict survival outcomes in each group. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL and conference proceedings up until April 2019. We also searched one trial registry (ClinicalTrials.gov). SELECTION CRITERIA: We included retrospective and prospective studies evaluating interim PET scans in a minimum of 10 individuals with HL (all stages) undergoing first-line therapy. Interim PET was defined as conducted during therapy (after one, two, three or four treatment cycles). The minimum follow-up period was at least 12 months. We excluded studies if the trial design allowed treatment modification based on the interim PET scan results. DATA COLLECTION AND ANALYSIS: We developed a data extraction form according to the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Two teams of two review authors independently screened the studies, extracted data on overall survival (OS), progression-free survival (PFS) and PET-associated adverse events (AEs), assessed risk of bias (per outcome) according to the Quality in Prognosis Studies (QUIPS) tool, and assessed the certainty of the evidence (GRADE). We contacted investigators to obtain missing information and data. MAIN RESULTS: Our literature search yielded 11,277 results. In total, we included 23 studies (99 references) with 7335 newly-diagnosed individuals with classic HL (all stages).Participants in 16 studies underwent (interim) PET combined with computed tomography (PET-CT), compared to PET only in the remaining seven studies. The standard chemotherapy regimen included ABVD (16) studies, compared to BEACOPP or other regimens (seven studies). Most studies (N = 21) conducted interim PET scans after two cycles (PET2) of chemotherapy, although PET1, PET3 and PET4 were also reported in some studies. In the meta-analyses, we used PET2 data if available as we wanted to ensure homogeneity between studies. In most studies interim PET scan results were evaluated according to the Deauville 5-point scale (N = 12).Eight studies were not included in meta-analyses due to missing information and/or data; results were reported narratively. For the remaining studies, we pooled the unadjusted hazard ratio (HR). The timing of the outcome measurement was after two or three years (the median follow-up time ranged from 22 to 65 months) in the pooled studies.Eight studies explored the independent prognostic ability of interim PET by adjusting for other established prognostic factors (e.g. disease stage, B symptoms). We did not pool the results because the multivariable analyses adjusted for a different set of factors in each study.Overall survivalTwelve (out of 23) studies reported OS. Six of these were assessed as low risk of bias in all of the first four domains of QUIPS (study participation, study attrition, prognostic factor measurement and outcome measurement). The other six studies were assessed as unclear, moderate or high risk of bias in at least one of these four domains. Nine studies were assessed as high risk, and three studies as moderate risk of bias for the domain study confounding. Eight studies were assessed as low risk, and four studies as high risk of bias for the domain statistical analysis and reporting.We pooled nine studies with 1802 participants. Participants with HL who have a negative interim PET scan result probably have a large advantage in OS compared to those with a positive interim PET scan result (unadjusted HR 5.09, 95% confidence interval (CI) 2.64 to 9.81, I² = 44%, moderate-certainty evidence). In absolute values, this means that 900 out of 1000 participants with a negative interim PET scan result will probably survive longer than three years compared to 585 (95% CI 356 to 757) out of 1000 participants with a positive result.Adjusted results from two studies also indicate an independent prognostic value of interim PET scan results (moderate-certainty evidence).Progression-free survival Twenty-one studies reported PFS. Eleven out of 21 were assessed as low risk of bias in the first four domains. The remaining were assessed as unclear, moderate or high risk of bias in at least one of the four domains. Eleven studies were assessed as high risk, nine studies as moderate risk and one study as low risk of bias for study confounding. Eight studies were assessed as high risk, three as moderate risk and nine as low risk of bias for statistical analysis and reporting.We pooled 14 studies with 2079 participants. Participants who have a negative interim PET scan result may have an advantage in PFS compared to those with a positive interim PET scan result, but the evidence is very uncertain (unadjusted HR 4.90, 95% CI 3.47 to 6.90, I² = 45%, very low-certainty evidence). This means that 850 out of 1000 participants with a negative interim PET scan result may be progression-free longer than three years compared to 451 (95% CI 326 to 569) out of 1000 participants with a positive result.Adjusted results (not pooled) from eight studies also indicate that there may be an independent prognostic value of interim PET scan results (low-certainty evidence).PET-associated adverse eventsNo study measured PET-associated AEs. AUTHORS' CONCLUSIONS: This review provides moderate-certainty evidence that interim PET scan results predict OS, and very low-certainty evidence that interim PET scan results predict progression-free survival in treated individuals with HL. This evidence is primarily based on unadjusted data. More studies are needed to test the adjusted prognostic ability of interim PET against established prognostic factors.


Assuntos
Quimiorradioterapia/métodos , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Progressão da Doença , Intervalo Livre de Doença , Humanos , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Cochrane Database Syst Rev ; 3: CD011518, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30916356

RESUMO

BACKGROUND: Breast cancer is the most common cancer in women. Diagnosis and treatment may drastically affect quality of life, causing symptoms such as sleep disorders, depression and anxiety. Mindfulness-based stress reduction (MBSR) is a programme that aims to reduce stress by developing mindfulness, meaning a non-judgmental, accepting moment-by-moment awareness. MBSR seems to benefit patients with mood disorders and chronic pain, and it may also benefit women with breast cancer. OBJECTIVES: To assess the effects of mindfulness-based stress reduction (MBSR) in women diagnosed with breast cancer. SEARCH METHODS: In April 2018, we conducted a comprehensive electronic search for studies of MBSR in women with breast cancer, in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and two trial registries (World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov). We also handsearched relevant conference proceedings. SELECTION CRITERIA: Randomised clinical trials (RCTs) comparing MBSR versus no intervention in women with breast cancer. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Using a standardised data form, the review authors extracted data in duplicate on methodological quality, participants, interventions and outcomes of interest (quality of life, fatigue, depression, anxiety, quality of sleep, overall survival and adverse events). For outcomes assessed with the same instrument, we used the mean difference (MD) as a summary statistic for meta-analysis; for those assessed with different instruments, we used the standardised mean difference (SMD). The effect of MBSR was assessed in the short term (end of intervention), medium term (up to 6 months after intervention) and long term (up to 24 months after intervention). MAIN RESULTS: Fourteen RCTs fulfilled our inclusion criteria, with most studies reporting that they included women with early breast cancer. Ten RCTs involving 1571 participants were eligible for meta-analysis, while four studies involving 185 participants did not report usable results. Queries to the authors of these four studies were unsuccessful. All studies were at high risk of performance and detection bias since participants could not be blinded, and only 3 of 14 studies were at low risk of selection bias. Eight of 10 studies included in the meta-analysis recruited participants with early breast cancer (the remaining 2 trials did not restrict inclusion to a certain cancer type). Most trials considered only women who had completed cancer treatment.MBSR may improve quality of life slightly at the end of the intervention (based on low-certainty evidence from three studies with a total of 339 participants) but may result in little to no difference up to 6 months (based on low-certainty evidence from three studies involving 428 participants). Long-term data on quality of life (up to two years after completing MBSR) were available for one study in 97 participants (MD 0.00 on questionnaire FACT-B, 95% CI -5.82 to 5.82; low-certainty evidence).In the short term, MBSR probably reduces fatigue (SMD -0.50, 95% CI -0.86 to -0.14; moderate-certainty evidence; 5 studies; 693 participants). It also probably slightly reduces anxiety (SMD -0.29, 95% CI -0.50 to -0.08; moderate-certainty evidence; 6 studies; 749 participants), and it reduces depression (SMD -0.54, 95% CI -0.86 to -0.22; high-certainty evidence; 6 studies; 745 participants). It probably slightly improves quality of sleep (SMD -0.38, 95% CI -0.79 to 0.04; moderate-certainty evidence; 4 studies; 475 participants). However, these confidence intervals (except for short-term depression) are compatible with both an improvement and little to no difference.In the medium term, MBSR probably results in little to no difference in medium-term fatigue (SMD -0.31, 95% CI -0.84 to 0.23; moderate-certainty evidence; 4 studies; 607 participants). The intervention probably slightly reduces anxiety (SMD -0.28, 95% CI -0.49 to -0.07; moderate-certainty evidence; 7 studies; 1094 participants), depression (SMD -0.32, 95% CI -0.58 to -0.06; moderate-certainty evidence; 7 studies; 1097 participants) and slightly improves quality of sleep (SMD -0.27, 95% CI -0.63 to 0.08; moderate-certainty evidence; 4 studies; 654 participants). However, these confidence intervals are compatible with both an improvement and little to no difference.In the long term, moderate-certainty evidence shows that MBSR probably results in little to no difference in anxiety (SMD -0.09, 95% CI -0.35 to 0.16; 2 studies; 360 participants) or depression (SMD -0.17, 95% CI -0.40 to 0.05; 2 studies; 352 participants). No long-term data were available for fatigue or quality of sleep.No study reported data on survival or adverse events. AUTHORS' CONCLUSIONS: MBSR may improve quality of life slightly at the end of the intervention but may result in little to no difference later on. MBSR probably slightly reduces anxiety, depression and slightly improves quality of sleep at both the end of the intervention and up to six months later. A beneficial effect on fatigue was apparent at the end of the intervention but not up to six months later. Up to two years after the intervention, MBSR probably results in little to no difference in anxiety and depression; there were no data available for fatigue or quality of sleep.


Assuntos
Neoplasias da Mama/psicologia , Atenção Plena , Estresse Psicológico/terapia , Ansiedade/psicologia , Depressão/psicologia , Fadiga/psicologia , Feminino , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Transtornos do Sono-Vigília/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...