Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 68: 105198, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593966

RESUMO

Nowadays celiac disease is becoming more common. It is the autonomic genetic disease that is accompanied by damage to the intestines due to a reaction to eating some proteins. People who are suffering from celiac disease cannot eat food containing gluten, including dough made from gluten-containing seeds. But the gluten-free dough has commonly bad rheological properties and cannot be used for automatic molding the dumplings. In this article, we propose the ultrasonic-assisted technology to fabricate the gluten-free dough with improved rheological properties acceptable for automatic molding of the dumplings. Application of ultrasonic treatment at a frequency of 35 kHz during the dough preparation leads to the homogenization of the dough structure and changing the rheological properties of the dough. The ultrasound induces mechanical, physical and chemical/biochemical changes of the dough components through cavitation. The sonication causes a doubled dough volume increase followed by an additional mass yield of the dumplings equal 2-10% per kilogram of dough. Besides extra beneficial economic effect, our technology provides an additional sterilization effect of the fabricated dough.

2.
Mater Sci Eng C Mater Biol Appl ; 109: 110458, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228946

RESUMO

Different metal particles are increasingly used to target bacteria as an alternative to antibiotics. Despite numerous data about treating bacterial infections, the utilization of metal particles in antibacterial coatings for implantable devices and medicinal materials promoting wound healing. The antibacterial mechanisms of nanoscale and microscale particles are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. Thus, investigation of the antibacterial mechanisms of nanostructured metal particles is very important for the development of more effective antimicrobial materials. However, it is very difficult to develop a proper model for revealing the antibacterial mechanisms due to difficulty to choose a method that allows obtaining materials of various properties under approximately the same conditions. In this paper, we propose a green and feasible technique to create critical conditions for modification of zinc particles at highly non-equilibrium states. We demonstrate that the sonication process can be useful for fabrication the materials with oscillating physical, chemical and antibacterial properties. We believe this method besides medical applications can be also used in natural science basic research as an experimental tool for modelling the physical and chemical processes. After the sonication, the zinc particles exhibit a different surface morphology and amount of leached Zn2+ ions compared to initial ones. It has been revealed that oscillations of the Zn2+ ions concentration lead to oscillation the antibacterial properties. Thus, the properties of the materials can be easily altered by adjusting the ultrasound energy dissipated via varying the sonication.

3.
J Mater Chem B ; 7(43): 6810-6821, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31608920

RESUMO

Drug delivery systems based on the zeolitic imidazolate framework ZIF-8 have recently attracted viable research interest owing to their capability of decomposing in acidic media and thus performing targeted drug delivery. In vivo realization of this mechanism faces a challenge of relatively slow decomposition rates, even at elevated acidic conditions that are barely achievable in diseased tissues. In this study we propose to combine drug delivery nanocomposites with a semiconductor photocatalytic agent that would be capable of inducing a local pH gradient in response to external electromagnetic radiation. In order to test this principle, a model drug-releasing nanocomposite comprising photocatalytic titania nanotubes, ZIF-8, and the antitumor drug doxorubicin has been investigated. This system was demonstrated to release the drug in a quantity sufficient for effectively suppressing IMR-32 neuroblastoma cells that were used as a model diseased tissue. With locally applied UV irradiation, this result was achieved within 40 minutes, which is a relatively short time compared to the release duration in systems without photocatalyst, typically taking from several hours to several days.

4.
ACS Omega ; 4(13): 15421-15427, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572842

RESUMO

A novel flexible ion-selective sensor for potassium and sodium detection was proposed. Flexible ion-selective electrodes with pseudo-liquid internal solution on contrary to the system with a solid contact provided a more stable analytical signal. Such advantages were achieved because of polyelectrolyte (PEI/PSS) layers adsorption on the conduct substrate with a layer-by-layer technique. Such an approach demonstrated that ion-selective electrodes save sensitivity with Nernstian dependence: 56.2 ± 1.4 mV/dec a Na+ and 56.3 ± 1.9 mV/dec a K+ , as well as a fast time of response for potassium (5 s) and sodium (8 s) was shown. The sensing platform proposed demonstrates a better time of response and is close to the Nernstian value of sensitivity with a sensor low cost. The results proposed confirm a pseudo-liquid junction for the ion-selective electrode. Biocompatibility of an ion-selective sensing platform was demonstrated at potassium potentiometric measurements in Escherichia coli biofilms. Potassium levels in a biofilm were measured with potentiometry and showed agreement with the previous results.

5.
Front Chem ; 7: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245356

RESUMO

Adjustment of the environmental acidity is a powerful method for fine-tuning the outcome of many chemical processes. Numerous strategies have been developed for the modification of pH in bulk as well as locally. Electrochemical and photochemical processes provide a powerful approach for on-demand generation of ion concentration gradients locally at solid-liquid interfaces. Spatially organized in individual way electrodes provide a particular pattern of proton distribution in solution. It opens perspectives to iontronics which is a bioinspired approach to signaling, information processing, and storing by spatial and temporal distribution of ions. We prove here that soft layers allow to control of ion mobility over the surface as well as processes of self-organization are closely related to change in entropy. In this work, we summarize the achievements and discuss perspectives of ion gradients in solution for information processing.

6.
Life (Basel) ; 9(2)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137534

RESUMO

Network autocatalysis, which is autocatalysis whereby a catalyst is not directly produced in a catalytic cycle, is likely to be more common in chemistry than direct autocatalysis is. Nevertheless, the kinetics of autocatalytic networks often does not exactly follow simple quadratic or cubic rate laws and largely depends on the structure of the network. In this article, we analyzed one of the simplest and most chemically plausible autocatalytic networks where a catalytic cycle is coupled to an ancillary reaction that produces the catalyst. We analytically analyzed deviations in the kinetics of this network from its exponential growth and numerically studied the competition between two networks for common substrates. Our results showed that when quasi-steady-state approximation is applicable for at least one of the components, the deviation from the exponential growth is small. Numerical simulations showed that competition between networks results in the mutual exclusion of autocatalysts; however, the presence of a substantial noncatalytic conversion of substrates will create broad regions where autocatalysts can coexist. Thus, we should avoid the accumulation of intermediates and the noncatalytic conversion of the substrate when designing experimental systems that need autocatalysis as a source of positive feedback or as a source of evolutionary pressure.

7.
J R Soc Interface ; 16(150): 20180626, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958160

RESUMO

In situ studies of transmembrane channels often require a model bioinspired artificial lipid bilayer (LB) decoupled from its underlaying support. Obtaining free-standing lipid membranes is still a challenge. In this study, we suggest an electrochemical approach for LB separation from its solid support via hydroquinone oxidation. Layer-by-layer deposition of polyethylenimine (PEI) and polystyrene sulfonate (PSS) on the gold electrode was performed to obtain a polymeric nanocushion of [PEI/PSS]3/PEI. The LB was deposited on top of an underlaying polymer support from the dispersion of small unilamellar vesicles due to their electrostatic attraction to the polymer support. Since lipid zwitterions demonstrate pH-dependent charge shifting, the separation distance between the polyelectrolyte support and LB can be adjusted by changing the environmental pH, leading to lipid molecules recharge. The proton generation associated with hydroquinone oxidation was studied using scanning vibrating electrode and scanning ion-selective electrode techniques. Electrochemical impedance spectroscopy is suggested to be a powerful instrument for the in situ observation of processes associated with the LB-solid support interface. Electrochemical spectroscopy highlighted the reversible disappearance of the LB impact on impedance in acidic conditions set by dilute acid addition as well as by electrochemical proton release on the gold electrode due to hydroquinone oxidation.


Assuntos
Ouro/química , Hidroquinonas/química , Bicamadas Lipídicas/química , Polietilenoimina/química , Poliestirenos/química , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução
8.
Langmuir ; 35(26): 8543-8556, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31018639

RESUMO

This article summarizes more than 10 years of cooperation with Prof. Helmuth Möhwald. Here we describe how the research moved from light-regulated feedback sustainable systems and control biodevices to the current focus on infochemistry in aqueous solution. An important advanced characteristic of such materials and devices is the pH concentration gradient in aqueous solution. A major part of the article focuses on the use of localized illumination for proton generation as a reliable, minimal-reagent-consuming, stable light-promoted proton pump. The in situ scanning vibration electrode technique (SVET) and scanning ion-selective electrode technique (SIET) are efficient for the spatiotemporal evolution of ions on the surface. pH-sensitive polyelectrolyte (PEs) multilayers with different PE architectures are composed with a feedback loop for bionic devices. We show here that pH-regulated PE multilayers can change their properties-film thickness and stiffness, permeability, hydrophilicity, and/or fluorescence-in response to light or electrochemical or biological processes instead of classical acid/base titration.

9.
Ultrason Sonochem ; 52: 437-445, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30594519

RESUMO

The influence of surface nanotopography of sonochemically generated mesoporous titania coatings (TMS) on the adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) have been investigated in vitro for the first time. It has been revealed that adhesion and proliferation of hMSCs is higher on disordered TMS surfaces compared to smooth polished titania surface after five days of incubation. Surprisingly, the sonochemically generated disordered nanotopography induces the differentiation of hMSCs into osteogenic direction in the absence of osteogenic medium in 14 days of incubation. Thus sonochemical nanostructuring of titanium based implants stimulates the regenerative process of bone tissue.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanoestruturas/química , Próteses e Implantes , Titânio/química , Titânio/farmacologia , Ondas Ultrassônicas , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Teste de Materiais , Nanotecnologia , Osteogênese/efeitos dos fármacos , Propriedades de Superfície , Fatores de Tempo
10.
Bioconjug Chem ; 29(11): 3793-3799, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30350577

RESUMO

The development of stimuli-responsive nanocontainers is an issue of utmost importance for many applications such as targeted drug delivery, regulation of the cell and tissue behavior, making bacteria have useful functions and here converting light. The present work shows a new contribution to the design of polyelectrolyte (PE) containers based on surface modified mesoporous titania particles with deposited Ag nanoparticles to achieve chemical light upconversion via biofilms. The PE shell allows slowing down the kinetics of a release of loaded l-arabinose and switching the bacteria luminescence in a certain time. The hybrid TiO2/Ag/PE containers activated at 980 nm (IR) illumination demonstrate 10 times faster release of l-arabinose as opposed to non-activated containers. Fast IR-released l-arabinose switch bacteria fluorescence which we monitor at 510 nm. The approach described herein can be used in many applications where the target and delayed switching and light upconversion are required.


Assuntos
Arabinose/administração & dosagem , Biofilmes , Escherichia coli/fisiologia , Nanoestruturas/química , Polieletrólitos/química , Prata/química , Titânio/química , Arabinose/metabolismo , Portadores de Fármacos/química , Fluorescência , Humanos , Luminescência , Nanopartículas Metálicas/química
11.
J Am Chem Soc ; 140(32): 10221-10232, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30035540

RESUMO

This work describes the autocatalytic copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between tripropargylamine and 2-azidoethanol in the presence of Cu(II) salts. The product of this reaction, tris-(hydroxyethyltriazolylmethyl)amine (N(C3N3)3), accelerates the cycloaddition reaction (and thus its own production) by two mechanisms: (i) by coordinating Cu(II) and promoting its reduction to Cu(I) and (ii) by enhancing the catalytic reactivity of Cu(I) in the cycloaddition step. Because of the cooperation of these two processes, a rate enhancement of >400× is observed over the course of the reaction. The kinetic profile of the autocatalysis can be controlled by using different azides and alkynes or ligands (e.g., ammonia) for Cu(II). When carried out in a layer of 1% agarose gel, and initiated by ascorbic acid, this autocatalytic reaction generates an autocatalytic front. This system is prototypical of autocatalytic reactions where the formation of a product, which acts as a ligand for a catalytic metal ion, enhances the production and activity of the catalyst.

12.
Phys Chem Chem Phys ; 20(31): 20340-20346, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30003208

RESUMO

It was demonstrated in our previous work that the photoelectrochemical (PEC) reduction processes occur with a giant incident photon-to-current conversion efficiency (IPCE ≫ 100%) at bismuth oxysulfide (BOS) semiconductor films in aqueous solutions containing acceptors of photoelectrons ([Fe(CN)6]3-). The anomalously high IPCE was related to the photoconductivity of the semiconductor. In this work, we analyze the dynamics of the chemical and phase composition of BOS films with variation of their deposition time, as well as the dependence of photocurrent on the film thickness and wavelength of the incident light. We demonstrate that in the case of illumination with a short-wavelength light (λ = 465 nm), the photocurrent is reduced down to a complete disappearance with an increase in the film thickness in the range of 0.3-1.3 µm, and for a fixed thickness of the bismuth oxysulfide film, the photocurrent decreases with the reduction of the wavelength indicating that photogeneration of the charge carriers over the entire thickness of the film is necessary for the giant IPCE effect. Using the light induced transient grating (LITG) method, the lifetime of the charge carriers (τ) was determined in the range of 25-80 ps depending on the film thickness, whereas the diffusion coefficient (D) does not exceed 1 cm2 s-1 meaning that the charge transport across the films is determined only by drift.

13.
Adv Mater ; 29(40)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28850736

RESUMO

Nanostructured layered bismuth oxysulfide films synthesized by chemical bath deposition reveal a giant incident photon-to-current conversion efficiency (IPCE). This study shows that surprisingly for the cathodic photocurrent in the photoreduction process, the IPCE reaches ≈2500% in aqueous solutions containing [Fe(CN)6 ]3- . The giant IPCE is observed starting from a certain minimal oxidizer concentration (c > 10-3 m for [Fe(CN)6 ]3- ) and decreases nonlinearly with an increase of illumination intensity. Giant IPCE is determined by the decrease in resistivity of the bismuth oxysulfide film under illumination with photoconductivity gain, which provides the possibility of charge carriers from an external circuit to participate in the photoreduction process. Giant IPCE is observed not only in [Fe(CN)6 ]3- solutions, but also in electrolytes containing other photoelectron acceptors: Fe3+ , I3- , quinone, H2 O2 . In all, solution-processed layered bismuth oxysulfide films offer large-area coverage, nontoxicity, low cost, and compatibility with a wide range of substrates. Abnormally high photoelectrochemical activity, as well as a band gap energy value favorable for efficient conversion of solar light (1.38 eV, direct optical transitions), proves the potential of bismuth oxysulfide photoelectrodes for a new generation of high-performance photoconverters.

14.
ACS Appl Mater Interfaces ; 9(28): 24282-24289, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28654237

RESUMO

Energy-transfer reactions are the key for living open systems, biological chemical networking, and the development of life-inspired nanoscale machineries. It is a challenge to find simple reliable synthetic chemical networks providing a localization of the time-dependent flux of matter. In this paper, we look to photocatalytic reaction on TiO2 from different angles, focusing on proton generation and introducing a reliable, minimal-reagent-consuming, stable inorganic light-promoted proton pump. Localized illumination was applied to a TiO2 surface in solution for reversible spatially controlled "inorganic photoproton" isometric cycling, the lateral separation of water-splitting reactions. The proton flux is pumped during the irradiation of the surface of TiO2 and dynamically maintained at the irradiated surface area in the absence of any membrane or predetermined material structure. Moreover, we spatially predetermine a transient acidic pH value on the TiO2 surface in the irradiated area with the feedback-driven generation of a base as deactivator. Importantly we describe how to effectively monitor the spatial localization of the process by the in situ scanning ion-selective electrode technique (SIET) measurements for pH and the scanning vibrating electrode technique (SVET) for local photoelectrochemical studies without additional pH-sensitive dye markers. This work shows the great potential for time- and space-resolved water-splitting reactions for following the investigation of pH-stimulated processes in open systems with their flexible localization on a surface.

15.
Adv Healthc Mater ; 6(15)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28371540

RESUMO

Surface structuring of titanium-based implants is known to modulate the behavior of adherent cells, but the influence of different nanotopographies is poorly understood. The aim is to investigate preosteoblast proliferation, adhesion, morphology, and migration on surfaces with similar surface chemistry but distinct nanotopographical features. Sonochemical treatment and anodic oxidation are employed to fabricate disordered, mesoporous titania (TMS) and ordered titania nanotubular (TNT) topographies on titanium, respectively. Morphological evaluation reveals that cells are polygonal and well-spread on TMS, but display an elongated, fibroblast-like morphology on TNT surfaces, while they are much flatter on glass. Both nanostructured surfaces impair cell adhesion, but TMS is more favorable for cell growth due to its support of cell attachment and spreading in contrast to TNT. A quantitative wound healing assay in combination with live-cell imaging reveals that cell migration on TMS surfaces has a more collective character than on other surfaces, probably due to a closer proximity between neighboring migrating cells on TMS. The results indicate distinctly different cell adhesion and migration on ordered and disordered titania nanotopographies, providing important information that can be used in optimizing titanium-based scaffold design to foster bone tissue growth and repair while allowing for the encapsulation of drugs into porous titania layer.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Nanopartículas Metálicas/química , Osteoblastos/fisiologia , Osteogênese/fisiologia , Titânio/química , Animais , Células 3T3 BALB , Diferenciação Celular/fisiologia , Tamanho Celular , Células Cultivadas , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/ultraestrutura , Camundongos , Osteoblastos/citologia , Tamanho da Partícula , Fibras de Estresse/metabolismo , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 19(8): 6286-6291, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28195290

RESUMO

An understanding of the nature and conditions of nonlinear processes in open systems is important for modulation of the microstructure of solids at a new level of complexity. We demonstrate that cavitation generated by high intensity ultrasound (HIUS) triggers nonlinear processes in microparticles and layers of titanium. We reveal a non-monotonic dependence of the size of grains in the treated solids on sonication time, and oscillation of titanium grain sizes vs. time of ultrasonic treatment, indicating the influence of two opposing forces: cavitation driven impact of shock heating and shear stress on surfaces. These nonlinear self-organization processes in solids promise new microstructured materials with applications among others in bio- and geosciences.

17.
Adv Healthc Mater ; 6(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196304

RESUMO

Metal surface nanostructuring to guide cell behavior is an attractive strategy to improve parts of medical implants, lab-on-a-chip, soft robotics, self-assembled microdevices, and bionic devices. Here, we discus important parameters, relevant trends, and specific examples of metal surface nanostructuring to guide cell behavior on metal-based hybrid surfaces. Surface nanostructuring allows precise control of cell morphology, adhesion, internal organization, and function. Pre-organized metal nanostructuring and dynamic stimuli-responsive surfaces are used to study various cell behaviors. For cells dynamics control, the oscillating stimuli-responsive layer-by-layer (LbL) polyelectrolyte assemblies are discussed to control drug delivery, coating thickness, and stiffness. LbL films can be switched "on demand" to change their thickness, stiffness, and permeability in the dynamic real-time processes. Potential applications of metal-based hybrids in biotechnology and selected examples are discussed.


Assuntos
Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Metálicas/química , Animais , Adesão Celular , Humanos , Camundongos , Propriedades de Superfície
18.
Ultrason Sonochem ; 36: 146-154, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28069194

RESUMO

Titanium has been widely used as biomaterial for various medical applications because of its mechanical strength and inertness. This on the other hand makes it difficult to structure it. Nanostructuring can improve its performance for advanced applications such as implantation and lab-on-chip systems. In this study we show that a titania nanofoam on titanium can be formed under high intensity ultrasound (HIUS) treatment in alkaline solution. The physicochemical properties and morphology of the titania nanofoam are investigated in order to find optimal preparation conditions for producing surfaces with high wettability for cell culture studies and drug delivery applications. AFM and contact angle measurements reveal, that surface roughness and wettability of the surfaces depend nonmonotonously on ultrasound intensity and duration of treatment, indicating a competition between HIUS induced roughening and smoothening mechanisms. We finally demonstrate that superhydrophilic bio-and cytocompatible surfaces can be fabricated with short time ultrasonic treatment.

19.
Langmuir ; 32(43): 11072-11085, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485504

RESUMO

This review examines the concepts how cavitation bubble collapse affects crystalline structure, the crystallization of newly formed structures, and recrystallization. Although this subject can be discussed in a broad sense across the area of metastable crystallization, our main focus is discussing specific examples of the inorganic solids: metal, intermetallics, metal oxides, and silicon. First, the temperature up to which ultrasound heats solids is discussed. Cavitation-induced changes in the crystal size of intermetallic phases in binary AlNi (50 wt % of Ni) alloys allow an estimation of local temperatures on surfaces and in bulk material. The interplay between atomic solid-state diffusion and recrystallization during bubble collapses in heterogeneous systems is revealed. Furthermore, cavitation triggered red/ox processes at solid/liquid interfaces and their influence on recrystallization are discussed for copper aluminum nanocomposites, zinc, titanium, magnesium-based materials, and silicon. Cavitation-driven highly nonequilibrium conditions can affect the thermodynamics and kinetics of mesoscopic phase formation in heterogeneous systems and in many cases boost the macroscopic performance of composite materials, notably in catalytic alloy and photocatalytic semiconductor oxide properties, corrosion resistance, nanostructured surface biocompatibility, and optical properties.

20.
Angew Chem Int Ed Engl ; 55(42): 13001-13004, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27439779

RESUMO

We introduce a simple concept of a light induced pH change, followed by high amplitude manipulation of the mechanical properties of an adjacent polymer film. Irradiation of a titania surface is known to cause water splitting, and this can be used to reduce the environmental pH to pH 4. The mechanical modulus of an adjacent pH sensitive polymer film can thus be changed by more than an order of magnitude. The changes can be localized, maintained for hours and repeated without material destruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA