Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Mater Sci Eng C Mater Biol Appl ; 128: 112320, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474871


This study aimed to fabricate cinnamon essential oil (CO)-laden 45S5 bioactive glass (BG)/soy protein (SP) scaffolds exhibiting antioxidant and antibacterial activity. In this regard, 45S5 BG-based scaffolds were produced by the foam replica method, and subsequently the scaffolds were coated with various concentrations of CO (2.5, 5 and 7 (v/v) %) incorporated SP solution. Scanning electron microscopy images revealed that the CO-laden SP effectively attached to the 45S5 BG scaffold struts. The presence of 45S5 BG, SP and CO was confirmed using Fourier transform infrared spectroscopy. Compressive strength results indicated that SP based coatings improved the scaffolds' mechanical properties compared to uncoated BG scaffolds. The loading efficiency and releasing behaviour of the different CO concentrations were tested by gas chromatography-mass spectroscopy and UV-Vis spectroscopy. The results showed that CO incorporated scaffolds have controlled releasing behaviour over seven days. Furthermore, the coating on the scaffold surfaces slightly retarded, but it did not inhibit, the in vitro bioactivity of the scaffolds. Moreover, the antioxidant and antibacterial activity of CO was studied. The free radical scavenging activity measured by DPPH was 5 ± 1, 41 ± 3, 44 ± 1 and 43 ± 1 % for BGSP, CO2.5, CO5 and CO7, respectively. The antioxidant activity was thus enhanced by incorporating CO. Agar diffusion and colony counting results indicated that the incorporation of CO increased the antibacterial activity of scaffolds against S. aureus and E. coli. In addition, cytotoxicity of the scaffolds was investigated using MG-63 osteoblast-like cells. The results showed that the BG-SP scaffold was non-toxic under the investigated conditions, whereas dose-dependent toxicity was observed in CO-laden scaffolds. Considered together, the developed phytotherapeutic agent laden 45S5 BG-based scaffolds are promising for bone tissue engineering exhibiting capability to combat bone infections and to protect against oxidative stress damage.

Antioxidantes , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cerâmica , Cinnamomum zeylanicum , Escherichia coli , Vidro , Óleos Voláteis/farmacologia , Estresse Oxidativo , Proteínas de Soja , Staphylococcus aureus , Engenharia Tecidual , Tecidos Suporte
J Neurochem ; 159(1): 101-115, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263932


Naturally occurring compounds such as sesquiterpenes and sesquiterpenoids (SQTs) have been shown to modulate GABAA receptors (GABAA Rs). In this study, the modulatory potential of 11 SQTs at GABAA Rs was analyzed to characterize their potential neurotropic activity. Transfected HEK293 cells and primary hippocampal neurons were functionally investigated using electrophysiological whole-cell recordings. Significantly different effects of ß-caryophyllene and α-humulene, as well as their respective derivatives ß-caryolanol and humulol, were observed in the HEK293 cell system. In neurons, the concomitant presence of phasic and tonic GABAA R configurations accounts for differences in receptor modulation by SQTs. The in vivo presence of the γ2 and δ subunits is important for SQT modulation. While phasic GABAA receptors in hippocampal neurons exhibited significantly altered GABA-evoked current amplitudes in the presence of humulol and guaiol, negative allosteric potential at recombinantly expressed α1 ß2 γ2 receptors was only verified for humolol. Modeling and docking studies provided support for the binding of SQTs to the neurosteroid-binding site of the GABAA R localized between transmembrane segments 1 and 3 at the (+ α)-(- α) interface. In sum, differences in the modulation of GABAA R isoforms between SQTs were identified. Another finding is that our results provide an indication that nutritional digestion affects the neurotropic potential of natural compounds.

Anal Bioanal Chem ; 413(17): 4387-4396, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050388


The (semi)volatile fraction of Matricaria chamomilla L., an annual herbal plant from the family of Asteraceae, contains high quantities of sesquiterpenes and sesquiterpenoids. A method was developed to achieve isolation and separation of these compounds, using a combination of solvent assisted flavor evaporation (SAFE) and solid support-free liquid-liquid chromatography. The biphasic liquid solvent system n-heptane/ethyl acetate/methanol/water, 5/2/5/2 v/v/v/v (Arizona S) was elaborated as a suitable solvent system for the simultaneous separation of the target compounds. The lab-scale liquid-liquid chromatography separation performed in a countercurrent chromatography (CCC) column was successfully transferred to a semi-preparative centrifugal partition chromatography (CPC) column, which enabled the isolation of artemisia ketone, artemisia alcohol, α-bisabolone oxide A, and (E)-en-yn-dicycloether. α-Bisabolol oxide A and (Z)-en-yn-dicycloether co-eluted, but were successfully separated by subsequent size-exclusion chromatography (SEC). Similarly, spathulenol and α-bisabolol oxide B were obtained as a mixture, and were separated by means of column chromatography using silica gel as stationary phase. The isolated compounds were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS).

Cromatografia Líquida/métodos , Matricaria/química , Extratos Vegetais/química , Sesquiterpenos/isolamento & purificação , Centrifugação/métodos , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Sesquiterpenos/análise , Solventes/química
Pharmaceutics ; 11(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683863


The objective of this study was to produce antibacterial poly(ε-caprolactone) (PCL)-gelatin (GEL) electrospun nanofiber mats containing clove essential oil (CLV) using glacial acetic acid (GAA) as a "benign" (non-toxic) solvent. The addition of CLV increased the fiber diameter from 241 ± 96 to 305 ± 82 nm. Aside from this, the wettability of PCL-GEL nanofiber mats was increased by the addition of CLV. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of CLV, and the actual content of CLV was determined by gas chromatography-mass spectrometry (GC-MS). Our investigations showed that CLV-loaded PCL-GEL nanofiber mats did not have cytotoxic effects on normal human dermal fibroblast (NHDF) cells. On the other hand, the fibers exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Consequently, PCL-GEL/CLV nanofiber mats are potential candidates for antibiotic-free wound healing applications.

Artigo em Inglês | MEDLINE | ID: mdl-32039166


The aim of this study was to fabricate and characterize various concentrations of peppermint essential oil (PEP) loaded on poly(ε-caprolactone) (PCL) electrospun fiber mats for healing applications, where PEP was intended to impart antibacterial activity to the fibers. SEM images illustrated that the morphology of all electrospun fiber mats was smooth, uniform, and bead-free. The average fiber diameter was reduced by the addition of PEP from 1.6 ± 0.1 to 1.0 ± 0.2 µm. Functional groups of the fibers were determined by Raman spectroscopy. Gas chromatography-mass spectroscopy (GC-MS) analysis demonstrated the actual PEP content in the samples. In vitro degradation was determined by measuring weight loss and their morphology change, showing that the electrospun fibers slightly degraded by the addition of PEP. The wettability of PCL and PEP loaded electrospun fiber mats was measured by determining contact angle and it was shown that wettability increased with the incorporation of PEP. The antimicrobial activity results revealed that PEP loaded PCL electrospun fiber mats exhibited inhibition against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. In addition, an in-vitro cell viability assay using normal human dermal fibroblast (NHDF) cells revealed improved cell viability on PCL, PCLPEP1.5, PCLPEP3, and PCLGEL6 electrospun fiber mats compared to the control (CNT) after 48 h cell culture. Our findings showed for the first time PEP loaded PCL electrospun fiber mats with antibiotic-free antibacterial activity as promising candidates for wound healing applications.