Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
3.
Circ Cardiovasc Imaging ; 13(2): e009829, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32063057

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) volume (cm3) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenuation measurements quantified from noncontrast cardiac computed tomography. METHODS: Our study included 2068 asymptomatic subjects (56±9 years, 59% male) from the EISNER trial (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) with long-term follow-up after coronary artery calcium measurement. EAT volume and mean attenuation were quantified using automated deep learning software from noncontrast cardiac computed tomography. MACE was defined as myocardial infarction, late (>180 days) revascularization, and cardiac death. EAT measures were compared to coronary artery calcium score and atherosclerotic cardiovascular disease risk score for MACE prediction. RESULTS: At 14±3 years, 223 subjects suffered MACE. Increased EAT volume and decreased EAT attenuation were both independently associated with MACE. Atherosclerotic cardiovascular disease risk score, coronary artery calcium, and EAT volume were associated with increased risk of MACE (hazard ratio [95%CI]: 1.03 [1.01-1.04]; 1.25 [1.19-1.30]; and 1.35 [1.07-1.68], P<0.01 for all) and EAT attenuation was inversely associated with MACE (hazard ratio, 0.83 [95% CI, 0.72-0.96]; P=0.01), with corresponding Harrell C statistic of 0.76. MACE risk progressively increased with EAT volume ≥113 cm3 and coronary artery calcium ≥100 AU and was highest in subjects with both (P<0.02 for all). In 1317 subjects, EAT volume was correlated with inflammatory biomarkers C-reactive protein, myeloperoxidase, and adiponectin reduction; EAT attenuation was inversely related to these biomarkers. CONCLUSIONS: Fully automated EAT volume and attenuation quantification by deep learning from noncontrast cardiac computed tomography can provide prognostic value for the asymptomatic patient, without additional imaging or physician interaction.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31897586

RESUMO

PURPOSE: 18F-sodium fluoride (18F-NaF) has shown promise in assessing disease activity in coronary arteries, but currently used measures of activity - such as maximum target to background ratio (TBRmax) - are defined by single pixel count values. We aimed to develop a novel coronary-specific measure of 18F-NaF PET reflecting activity throughout the entire coronary vasculature (coronary microcalcification activity [CMA]). METHODS: Patients with recent myocardial infarction and multi-vessel coronary artery disease underwent 18F-NaF PET and coronary CT angiography. We assessed the association between coronary 18F-NaF uptake (both TBRmax and CMA) and coronary artery calcium scores (CACS) as well as low attenuation plaque (LAP, attenuation < 30 Hounsfield units) volume. RESULTS: In 50 patients (64% males, 63 ± 7 years), CMA and TBRmax were higher in vessels with LAP compared to those without LAP (1.09 [0.02, 2.34] versus 0.0 [0.0, 0.0], p < 0.001 and 1.23 [1.16, 1.37] versus 1.04 [0.93, 1.11], p < 0.001). Compared to a TBRmax threshold of 1.25, CMA > 0 had a higher diagnostic accuracy for detection of LAP: sensitivity of 93.1 (83.3-98.1)% versus 58.6 (44.9-71.4)% and a specificity of 95.7 (88.0-99.1)% versus 80.0 (68.7-88.6)% (both p < 0.001). 18F-NaF uptake assessed by CMA correlated more closely with LAP (r = 0.86, p < 0.001) than the CT calcium score (r = 0.39, p < 0.001), with these associations outperforming those observed for TBRmax values (LAP r = 0.63, p < 0.001; CT calcium score r = 0.30, p < 0.001). CONCLUSIONS: Automated assessment of disease activity across the entire coronary vasculature is feasible using 18F-NaF CMA, providing a single measurement that has closer agreement with CT markers of plaque vulnerability than more traditional measures of plaque activity.

6.
Diabetes Care ; 43(2): 453-459, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31776140

RESUMO

OBJECTIVE: Prevalence and prognostic impact of cardiovascular disease differ between patients with or without diabetes. We aimed to explore differences in the prevalence and prognosis of myocardial ischemia by automated quantification of total perfusion deficit (TPD) among patients with and without diabetes. RESEARCH DESIGN AND METHODS: Of 20,418 individuals who underwent single-photon emission computed tomography myocardial perfusion imaging, 2,951 patients with diabetes were matched to 2,951 patients without diabetes based on risk factors using propensity score. TPD was categorized as TPD = 0%, 0% < TPD < 1%, 1% ≤ TPD < 5%, 5% ≤ TPD ≤ 10%, and TPD >10%. Major adverse cardiovascular events (MACE) were defined as a composite of all-cause mortality, myocardial infarction, unstable angina, or late revascularization. RESULTS: MACE risk was increased in patients with diabetes compared with patients without diabetes at each level of TPD above 0 (P < 0.001 for interaction). In patients with TPD >10%, patients with diabetes had greater than twice the MACE risk compared with patients without diabetes (annualized MACE rate 9.4 [95% CI 6.7-11.6] and 3.9 [95% CI 2.8-5.6], respectively, P < 0.001). Patients with diabetes with even very minimal TPD (0% < TPD < 1%) experienced a higher risk for MACE than those with 0% TPD (hazard ratio 2.05 [95% CI 1.21-3.47], P = 0.007). Patients with diabetes with a TPD of 0.5% had a similar MACE risk as patients without diabetes with a TPD of 8%. CONCLUSIONS: For every level of TPD >0%, even a very minimal deficit of 0% < TPD < 1%, the MACE risk was higher in the patients with diabetes compared with patients without diabetes. Patients with diabetes with minimal ischemia had comparable MACE risk as patients without diabetes with significant ischemia.

7.
J Nucl Med ; 61(2): 249-255, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31451490

RESUMO

Cardiac allograft vasculopathy (CAV) is a major cause of graft failure after cardiac transplantation. CAV is characterized by diffuse involvement of epicardial coronary arteries and the microvasculature. PET allows quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR), which may be accurate markers of CAV severity. We compared the diagnostic and prognostic utility of stress MBF and MFR after cardiac transplantation. Methods: This was a cohort study of consecutive cardiac transplant patients undergoing 82Rb PET scans. Semiquantitative regional analysis and global measurement of stress MBF and MFR were performed. Associations with all-cause mortality were assessed with multivariable Cox analysis. The diagnostic accuracy for significant CAV (grade 2/3) and the prognostic accuracy of stress MBF and MFR, corrected and uncorrected for rate-pressure product, were compared. Results: In total, 99 patients, mean age 68.8 y and 75.8% male, were followed for a median of 3.4 y, during which 26 deaths occurred. Stress MBF and MFR had similar diagnostic accuracy for significant CAV. However, uncorrected MFR had improved discrimination for all-cause mortality compared with stress MBF (area under the curve, 0.748 vs. 0.639; P = 0.048). Higher MFR (adjusted hazard ratio, 0.30; P < 0.001), but not stress MBF (adjusted hazard ratio, 1.14; P = 0. 656), was associated with reduced all-cause mortality. Preserved MFR (>2.0) identified relatively low-risk patients (annual mortality, 4.7%), whereas the presence of a left ventricular ejection fraction lower than 45% and MFR lower than 1.7 identified high-risk patients (annual mortality, 51.6%). Conclusion: Quantitative PET analysis, and particularly MFR, has diagnostic and prognostic utility after heart transplantation. Preserved MFR identifies low-risk patients, whereas the presence of multiple abnormal parameters identifies high-risk patients.

8.
Eur Heart J Cardiovasc Imaging ; 21(1): 58-66, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211387

RESUMO

AIMS: In patients with stable coronary artery disease (CAD) and high-risk plaques (HRPs) on coronary computed tomography angiography (CTA), we sought to define qualitative and quantitative CTA predictors of abnormal coronary 18F-sodium fluoride uptake (18F-NaF) by positron emission tomography (PET). METHODS AND RESULTS: Patients undergoing coronary CTA were screened for HRP. Those who presented with ≥3 CTA adverse plaque features (APFs) including positive remodelling; low attenuation plaque (LAP, <30 HU), spotty calcification; obstructive coronary stenosis ≥50%; plaque volume >100 mm3 were recruited for 18F-NaF PET. In lesions with stenosis ≥25%, quantitative plaque analysis and maximum 18F-NaF target to background ratios (TBRs) were measured. Of 55 patients, 35 (64%) manifested coronary 18F-NaF uptake. Of 68 high-risk lesions 49 (70%) had increased PET tracer activity. Of the APFs, LAP had the highest sensitivity (39.4%) and specificity (98.3%) for predicting 18F-NaF uptake. TBR values were higher in lesions with LAP compared to those without [1.6 (1.3-1.8) vs. 1.1 (1.0-1.3), P = 0.01]. On adjusted multivariable regression analysis, LAP (both qualitative and quantitative) was independently associated with plaque TBR [LAP qualitative: ß = 0.47, 95% confidence interval (CI) 0.30-0.65; P < 0.001] and (LAP volume: ß = 0.20 per 10 mm3, 95% CI 0.13-0.27; P < 0.001). CONCLUSION: In stable CAD patients with HRP, LAP is predictive of 18F-NaF coronary uptake, but 18F-NaF is often seen in the absence of LAP. If 18F-NaF uptake is shown to be associated with adverse outcomes and becomes clinically used, the presence of LAP may define patients who would not benefit from the added testing.

9.
Br J Radiol ; : 20190797, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31804143

RESUMO

Positron emission tomography (PET) with 18F-sodium fluoride (18F-NaF) has emerged as a promising non-invasive imaging modality to identify high-risk and ruptured atherosclerotic plaques. By visualizing microcalcification, 18F-NaF PET holds clinical promise in refining how we evaluate coronary artery disease, shifting our focus from assessing disease burden to atherosclerosis activity. In this review, we provide an overview of studies that have utilized 18F-NaF PET for imaging atherosclerosis. We discuss the associations between traditional coronary artery disease measures (risk factors) and 18F-NaF plaque activity. We also present the data on the histological validation as well as show how 18F-NaF uptake is associated with plaque morphology on intravascular and CT imaging. Finally, we discuss the technical challenges associated with 18F-NaF coronary PET highlighting recent advances in this area.

10.
J Nucl Cardiol ; 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792913

RESUMO

BACKGROUND: 18F-Fluoride uptake denotes calcification activity in aortic stenosis and atherosclerosis. While PET/MR has several advantages over PET/CT, attenuation correction of PET/MR data is challenging, limiting cardiovascular application. We compared PET/MR and PET/CT assessments of 18F-fluoride uptake in the aortic valve and coronary arteries. METHODS AND RESULTS: 18 patients with aortic stenosis or recent myocardial infarction underwent 18F-fluoride PET/CT followed immediately by PET/MR. Valve and coronary 18F-fluoride uptake were evaluated independently. Both standard (Dixon) and novel radial GRE) MR attenuation correction (AC) maps were validated against PET/CT with results expressed as tissue-to-background ratios (TBRs). Visually, aortic valve 18F-fluoride uptake was similar on PET/CT and PET/MR. TBRMAX values were comparable with radial GRE AC (PET/CT 1.55±0.33 vs. PET/MR 1.58 ± 0.34, P = 0.66; 95% limits of agreement - 27% to + 25%) but performed less well with Dixon AC (1.38 ± 0.44, P = 0.06; bias (-)14%; 95% limits of agreement - 25% to + 53%). In native coronaries, 18F-fluoride uptake was similar on PET/MR to PET/CT regardless of AC approach. PET/MR identified 28/29 plaques identified on PET/CT; however, stents caused artifact on PET/MR making assessment of 18F-fluoride uptake challenging. CONCLUSION: Cardiovascular PET/MR demonstrates good visual and quantitative agreement with PET/CT. However, PET/MR is hampered by stent-related artifacts currently limiting clinical application.

11.
Cardiovasc Res ; 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31853543

RESUMO

AIMS: Our aim was to evaluate the performance of machine learning (ML), integrating clinical parameters with coronary artery calcium (CAC), and automated epicardial adipose tissue (EAT) quantification, for the prediction of long-term risk of myocardial infarction (MI) and cardiac death in asymptomatic subjects. METHODS AND RESULTS: Our study included 1912 asymptomatic subjects [1117 (58.4%) male, age: 55.8 ± 9.1 years] from the prospective EISNER trial with long-term follow-up after CAC scoring. EAT volume and density were quantified using a fully automated deep learning method. ML extreme gradient boosting was trained using clinical co-variates, plasma lipid panel measurements, risk factors, CAC, aortic calcium, and automated EAT measures, and validated using repeated 10-fold cross validation. During mean follow-up of 14.5 ± 2 years, 76 events of MI and/or cardiac death occurred. ML obtained a significantly higher AUC than atherosclerotic cardiovascular disease (ASCVD) risk and CAC score for predicting events (ML: 0.82; ASCVD: 0.77; CAC: 0.77, P < 0.05 for all). Subjects with a higher ML score (by Youden's index) had high hazard of suffering events (HR: 10.38, P < 0.001); the relationships persisted in multivariable analysis including ASCVD-risk and CAC measures (HR: 2.94, P = 0.005). Age, ASCVD-risk, and CAC were prognostically important for both genders. Systolic blood pressure was more important than cholesterol in women, and the opposite in men. CONCLUSIONS: In this prospective study, machine learning used to integrate clinical and quantitative imaging-based variables significantly improves prediction of MI and cardiac death compared with standard clinical risk assessment. Following further validation, such a personalized paradigm could potentially be used to improve cardiovascular risk assessment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31762536

RESUMO

Background: Coronary computed tomography angiography (CTA) allows quantification of stenosis. However, such quantitative analysis is not part of clinical routine. We evaluated the feasibility of utilizing deep learning for quantifying coronary artery disease from CTA. Methods: A total of 716 diseased segments in 156 patients (66 ± 10 years) who underwent CTA were analyzed. Minimal luminal area (MLA), percent diameter stenosis (DS), and percent contrast density difference (CDD) were measured using semi-automated software (Autoplaque) by an expert reader. Using the expert annotations, deep learning was performed with convolutional neural networks using 10-fold cross-validation to segment CTA lumen and calcified plaque. MLA, DS and CDD computed using deep-learning-based approach was compared to expert reader measurements. Results: There was excellent correlation between the expert reader and deep learning for all quantitative measures (r=0.984 for MLA; r=0.957 for DS; and r=0.975 for CDD, p<0.001 for all). The expert reader and deep learning method was not significantly different for MLA (median 4.3 mm2 for both, p=0.68) and CDD (11.6 vs 11.1%, p=0.30), and was significantly different for DS (26.0 vs 26.6%, p<0.05); however, the ranges of all the quantitative measures were within inter-observer variability between 2 expert readers. Conclusions: Our deep learning-based method allows quantitative measurement of coronary artery disease segments accurately from CTA and may enhance clinical reporting.

13.
Am J Transplant ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758640

RESUMO

Cardiac allograft vasculopathy (CAV) is an increasingly important complication after cardiac transplant. We assessed the additive diagnostic benefit of quantitative plaque analysis in patients undergoing coronary computed tomography-angiography (CCTA). Consecutive patients undergoing CCTA for CAV surveillance were identified. Scans were visually interpreted for coronary stenosis. Semiautomated software was used to quantify noncalcified plaque (NCP), as well as its components. Optimal diagnostic cut-offs for CAV, with coronary angiography as gold standard, were defined using receiver operating characteristic curves. In total, 36 scans were identified in 17 patients. CAV was present in 17 (46.0%) reference coronary angiograms, at a median of 1.9 years before CCTA. Median NCP (147 vs 58, P < .001), low-density NCP (median 4.5 vs 0.9, P = .003), fibrous plaque (median 76.1 vs 31.1, P = .003), and fibrofatty plaque (median 63.6 vs 27.6, P < .001) volumes were higher in patients with CAV, whereas calcified plaque was not (median 0.0 vs 0.0, P = .510). Visual assessment of CCTA alone was 70.6% sensitive and 100% specific for CAV. The addition of total NCP volume increased sensitivity to 82.4% while maintaining 100% specificity. NCP volume is significantly higher in patients with CAV. The addition of quantitative analysis to visual interpretation improves the sensitivity for detecting CAV without reducing specificity.

16.
J Nucl Cardiol ; 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31559536

RESUMO

BACKGROUND: We tested the repeatability of myocardial blood flow (MBF) quantified using 82Rb with and without motion correction (MC) and with arterial input functions estimated from left ventricle (LV) and atrium (LA). METHODS: Twenty-one patients referred for clinical 82Rb PET/CT underwent repeated rest scans in a single imaging session. Global MBF was quantified using three different assessments by two operators: (1) automatic processing without MC and LV arterial input function (AIF), (2) with MC and LV-AIF, and (3) with MC and LA-AIF. Inter-scan and inter-operator repeatability were tested using coefficient of variation (CV). RESULTS: MC with LV-AIF did not change MBF (no MC: 1.01 ± 0.30 mL/min/g vs MC with LV-AIF: 1.01 ± 0.29, P = 0.70), whereas MC with LA-AIF showed significantly lower MBF assessments (0.95 ± 0.28 mL/min/g, P = 0.0006). We report significant improvement for test-retest reproducibility for global MBF following MC (CV; No MC: 16.0, MC (LV-AIF): 9.2, MC (LA-AIF): 8.8). Good inter-operator repeatability was observed for LV-AIF (CV = 4.7) and LA-AIF (CV = 5.6) for global MBF assessments. CONCLUSIONS: MC significantly improved the test-retest repeatability between operators and between scans. MBF obtained after MC with LV-AIF were comparable, whereas MBFs after MC and LA-AIF were significantly reduced.

17.
Eur J Nucl Med Mol Imaging ; 46(12): 2610-2620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31385011

RESUMO

PURPOSE: To improve the test-retest reproducibility of coronary plaque 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) uptake measurements. METHODS: We recruited 20 patients with coronary artery disease who underwent repeated hybrid PET/CT angiography (CTA) imaging within 3 weeks. All patients had 30-min PET acquisition and CTA during a single imaging session. Five PET image-sets with progressive motion correction were reconstructed: (i) a static dataset (no-MC), (ii) end-diastolic PET (standard), (iii) cardiac motion corrected (MC), (iv) combined cardiac and gross patient motion corrected (2 × MC) and, (v) cardiorespiratory and gross patient motion corrected (3 × MC). In addition to motion correction, all datasets were corrected for variations in the background activities which are introduced by variations in the injection-to-scan delays (background blood pool clearance correction, BC). Test-retest reproducibility of PET target-to-background ratio (TBR) was assessed by Bland-Altman analysis and coefficient of reproducibility. RESULTS: A total of 47 unique coronary lesions were identified on CTA. Motion correction in combination with BC improved the PET TBR test-retest reproducibility for all lesions (coefficient of reproducibility: standard = 0.437, no-MC = 0.345 (27% improvement), standard + BC = 0.365 (20% improvement), no-MC + BC = 0.341 (27% improvement), MC + BC = 0.288 (52% improvement), 2 × MC + BC = 0.278 (57% improvement) and 3 × C + BC = 0.254 (72% improvement), all p < 0.001). Importantly, in a sub-analysis of 18F-NaF-avid lesions with gross patient motion > 10 mm following corrections, reproducibility was improved by 133% (coefficient of reproducibility: standard = 0.745, 3 × MC = 0.320). CONCLUSION: Joint corrections for cardiac, respiratory, and gross patient motion in combination with background blood pool corrections markedly improve test-retest reproducibility of coronary 18F-NaF PET.

18.
J Nucl Cardiol ; 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31452085

RESUMO

BACKGROUND: We compared quantification of MBF and myocardial flow reserve (MFR) with a 99mTc-sestamibi CZT-SPECT to 15O-water PET. METHODS: SPECT MBF for thirty patients in the WATERDAY study was re-analyzed by QPET software with motion correction and optimal placement of the arterial input function. 15O-water PET MBF was re-quantified using dedicated software. Inter-operator variability was assessed using repeatability coefficients (RPC). RESULTS: Significant correlations were observed between global (r = 0.91, P < 0.001) and regional MBF (r = 0.86, P < 0.001) with SPECT compared to PET. Global MBF (rest 0.95 vs 1.05 ml/min/g, P = 0.07; stress 2.62 vs 2.68 mL/min/g, P = 0.17) and MFR (2.65 vs 2.75, P = 0.86) were similar between SPECT and PET. Rest (0.81 vs 0.98 mL/min/g, P = 0.03) and stress MBF (1.98 vs 2.61 mL/min/g, P = 0.01) in right coronary artery (RCA) were lower with SPECT compared to PET. However, MFR in the RCA territory was similar (2.54 vs 2.77, P = 0.21). The SPECT-PET RPC for global MBFs and MFR were 0.95 mL/min/g and 0.94, with inter-observer RPC of 0.59 mL/min/g and 0.74, respectively. CONCLUSIONS: MBF and MFR derived from CZT-SPECT with motion correction and optimal placement of the arterial input function showed good agreement with 15O-water PET, as well as low inter-operator variability.

19.
J Nucl Med ; 60(9): 1194-1204, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31375568

RESUMO

There has been an evolutionary leap in SPECT imaging with the advent of camera systems that use solid-state crystals and novel collimator designs configured specifically for cardiac imaging. Solid-state SPECT camera systems have facilitated dramatic reductions in both imaging time and radiation dose while maintaining high diagnostic accuracy. These advances are related to simultaneous improvement in photon sensitivity due to the collimator and imaging geometry, as well as image resolution due to the improved energy resolution of the new crystals. Improved photon sensitivity has facilitated fast or low-dose myocardial perfusion imaging (MPI), and early dynamic imaging has emerged as a technique for assessing myocardial blood flow with SPECT. Lastly, general-purpose solid-state camera systems and hybrid SPECT/CT systems have also been developed that may have important clinical roles in cardiac imaging. This review summarizes state-of-the-art solid-state SPECT MPI technology and clinical applications, including emerging techniques for SPECT MPI flow estimation. We also discuss imaging protocols used with the new cameras, potential imaging pitfalls, and the latest data providing large-scale validation of the diagnostic and prognostic value of this new technology.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31317178

RESUMO

AIMS: To optimize per-vessel prediction of early coronary revascularization (ECR) within 90 days after fast single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using machine learning (ML) and introduce a method for a patient-specific explanation of ML results in a clinical setting. METHODS AND RESULTS: A total of 1980 patients with suspected coronary artery disease (CAD) underwent stress/rest 99mTc-sestamibi/tetrofosmin MPI with new-generation SPECT scanners were included. All patients had invasive coronary angiography within 6 months after SPECT MPI. ML utilized 18 clinical, 9 stress test, and 28 imaging variables to predict per-vessel and per-patient ECR with 10-fold cross-validation. Area under the receiver operator characteristics curve (AUC) of ML was compared with standard quantitative analysis [total perfusion deficit (TPD)] and expert interpretation. ECR was performed in 958 patients (48%). Per-vessel, the AUC of ECR prediction by ML (AUC 0.79, 95% confidence interval (CI) [0.77, 0.80]) was higher than by regional stress TPD (0.71, [0.70, 0.73]), combined-view stress TPD (AUC 0.71, 95% CI [0.69, 0.72]), or ischaemic TPD (AUC 0.72, 95% CI [0.71, 0.74]), all P < 0.001. Per-patient, the AUC of ECR prediction by ML (AUC 0.81, 95% CI [0.79, 0.83]) was higher than that of stress TPD, combined-view TPD, and ischaemic TPD, all P < 0.001. ML also outperformed nuclear cardiologists' expert interpretation of MPI for the prediction of early revascularization performance. A method to explain ML prediction for an individual patient was also developed. CONCLUSION: In patients with suspected CAD, the prediction of ECR by ML outperformed automatic MPI quantitation by TPDs (per-vessel and per-patient) or nuclear cardiologists' expert interpretation (per-patient).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA