Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952334

RESUMO

Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitahua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.

2.
Sci Rep ; 9(1): 19394, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836815

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Harmful Algae ; 88: 101610, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31582156

RESUMO

The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.


Assuntos
Dinoflagelados , Toxinas Marinhas , Regiões Árticas , Teorema de Bayes , Chile , Cromatografia Líquida , Mar Mediterrâneo , Nova Zelândia , Espectrometria de Massas em Tandem
4.
Sci Rep ; 9(1): 14275, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582771

RESUMO

Environmentally induced epigenetic modifications have been proposed as one mechanism underlying rapid adaptive evolution of invasive species. Didemnum vexillum is an invasive colonial ascidian that has established in many coastal waters worldwide. Phylogenetic analyses have revealed that D. vexillum populations consist of two distinct clades; clade B appears to be restricted to the native range (Japan), whereas clade A is found in many regions throughout the world, including New Zealand. The spread of D. vexillum clade A suggests that it might be intrinsically more invasive than clade B, despite low levels of genetic diversity compared to populations from the native region. This study investigated whether D. vexillum clade A exhibits epigenetic signatures (specifically differences in DNA methylation) associated with invasiveness. Global DNA methylation patterns were significantly different between introduced clade A colonies, and both clades A and B in the native range. Introduced colonies also showed a significant reduction in DNA methylation levels, which could be a mechanism for increasing phenotypic plasticity. High levels of DNA methylation diversity were maintained in the introduced population, despite reduced levels of genetic diversity, which may allow invasive populations to respond quickly to changes in new environments. Epigenetic changes induced during the invasion process could provide a means for rapid adaptation despite low levels of genetic variation in introduced populations.

5.
Chemosphere ; 236: 124404, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545201

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin responsible for countless human intoxications and deaths around the world. The distribution of TTX and its analogues is diverse and the toxin has been detected in organisms from both marine and terrestrial environments. Increasing detections seafood species, such as bivalves and gastropods, has drawn attention to the toxin, reinvigorating scientific interest and regulatory concerns. There have been reports of TTX in 21 species of bivalves and edible gastropods from ten countries since the 1980's. While TTX is structurally dissimilar to saxitoxin (STX), another neurotoxin detected in seafood, it has similar sodium channel blocking action and potency and both neurotoxins have been shown to have additive toxicities. The global regulatory level for the STX group toxins applied to shellfish is 800 µg/kg. The presence of TTX in shellfish is only regulated in one country; The Netherlands, with a regulatory level of 44 µg/kg. Due to the recent interest surrounding TTX in bivalves, the European Food Safety Authority established a panel to assess the risk and regulation of TTX in bivalves, and their final opinion was that a concentration below 44 µg of TTX per kg of shellfish would not result in adverse human effects. In this article, we review current knowledge on worldwide TTX levels in edible gastropods and bivalves over the last four decades, the different methods of detection used, and the current regulatory status. We suggest research needs that will assist with knowledge gaps and ultimately allow development of robust monitoring and management protocols.


Assuntos
Bivalves/química , Contaminação de Alimentos/análise , Gastrópodes/química , Frutos do Mar/análise , Tetrodotoxina/análise , Animais , Contaminação de Alimentos/legislação & jurisprudência , Inocuidade dos Alimentos , Humanos , Países Baixos , Neurotoxinas/análise , Neurotoxinas/farmacocinética , Saxitoxina/análise , Tetrodotoxina/farmacocinética
6.
Harmful Algae ; 84: 244-260, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128809

RESUMO

Azaspiracids (AZA) are the most recently discovered group of lipophilic marine biotoxins of microalgal origin, and associated with human incidents of shellfish poisoning. They are produced by a few species of Amphidomataceae, but diversity and occurrence of the small-sized dinophytes remain poorly explored for many regions of the world. In order to analyze the presence and importance of Amphidomataceae in a highly productive area of Argentinean coastal waters (El Rincón area, SW Atlantic), a scientific cruise was performed in 2015 to sample the early spring bloom. In a multi-method approach, light microscopy was combined with real-time PCR molecular detection of Amphidomataceae, with chemical analysis of AZA, and with the establishment and characterization of amphidomatacean strains. Both light microscopy and PCR revealed that Amphidomataceae were widely present in spring plankton communities along the El Rincón area. They were particularly abundant offshore at the shelf front, reaching peak densities of 2.8 × 105 cells L-1, but no AZA were detected in field samples. In total, 31 new strains were determined as Az. dalianense and Az. spinosum, respectively. All Az. dalianense were non-toxigenic and shared the same rRNA sequences. The large majority of the new Az. spinosum strains revealed for the first time the presence of a non-toxigenic ribotype of this species, which is otherwise the most important AZA producer in European waters. One of the new Az. spinosum strains, with a particular slender shape and some other morphological peculiarities, clustered with toxigenic strains of Az. spinosum from Norway and, exceptionally for the species, produced only AZA-2 but not AZA-1. Results indicate a wide diversity within Az. spinosum, both in terms of sequence data and toxin profiles, which also will affect the qualitative and quantitative performance of the specific qPCR assay for this species. Overall, the new data provide a more differentiated perspective of diversity, toxin productivity and occurrence of Amphidomataceae in a poorly explored region of the global ocean.


Assuntos
Dinoflagelados , Humanos , Noruega , Plâncton , Ribotipagem
7.
J Phycol ; 55(3): 565-577, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30635909

RESUMO

Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1-D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15-30°C), salinity (20-38), and irradiance (10-200 µmol photons · m-2  · s-1 ). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 µmol photons · m-2  · s-1 ), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 µmol photons · m-2  · s-1 ) and growth rates were consistent across the range of salinity levels tested (20-38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 µmol photons · m-2  · s-1 ). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.


Assuntos
Dinoflagelados , Austrália , DNA Ribossômico , Proliferação Nociva de Algas , Salinidade
8.
Harmful Algae ; 80: 15-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502808

RESUMO

Azaspiracids (AZA) are a group of lipophilic polyether compounds which have been implicated in shellfish poisoning incidents around Europe. They are produced by a few species of the dinophycean genera Azadinium and Amphidoma (Amphidomataceae). The presence of AZA toxins in Norway is well documented, but knowledge of the distribution and diversity of Azadinium and other Amphidomataceae along the Norwegian coast is rather limited and poorly documented. On a research survey along the Norwegian coast in 2015 from the Skagerrak in the South to Trondheimsfjorden in the North, plankton samples from 67 stations were analysed for the presence of Azadinium and Amphidoma and their respective AZA by on-board live microscopy, real-time PCR assays specific for Amphidomataceae, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Microscopy using live samples and positive real-time PCR assays using a general family probe and two species specific probes revealed the presence of Amphidomataceae distributed throughout the sampling area. Overall abundance was low, however, and was in agreement with a lack of detectable AZA in plankton samples. Single cell isolation and morphological and molecular characterisation of established strains revealed the presence of 7 amphidomatacean species (Azadiniun spinosum, Az. poporum, Az. obesum, Az. dalianense, Az. trinitatum, Az. polongum, Amphidoma languida) in the area. Azaspiracids were produced by the known AZA producing species Az. spinosum, Az. poporum and Am. languida only. LC-MS/MS analysis further revealed that Norwegian strains produce previously unreported AZA for Norway (AZA-11 by Az. spinosum, AZA-37 by Az. poporum, AZA-38 and AZA-39 by Am. languida), and also four novel compounds (AZA-50, -51 by Az. spinosum, AZA-52, -53 by Am. languida), whose structural properties are described and which now can be included in existing analytical protocols. A maximum likelihood analysis of concatenated rDNA regions (SSU, ITS1-ITS2, partial LSU) showed that the strains of Az. spinosum fell in two well supported clades, where most but not all new Norwegian strains formed the new Ribotype B. Ribotype differentiation was supported by a minor morphological difference with respect to the presence/absence of a rim around the pore plate, and was consistently reflected by different AZA profiles. Strains of Az. spinosum from ribotype A produce AZA-1, -2 and -33, whereas the new strains of ribotype B produce mainly AZA-11 and AZA-51. Significant sequence differences between both Az. spinosum ribotypes underline the need to redesign the currently used qPCR probes in order to detect all AZA producing Az. spinosum. The results generally underline the conclusion that for the Norwegian coast area it is important that amphidomatacean species are taken into account in future studies and monitoring programs.


Assuntos
Dinoflagelados/química , Monitoramento Ambiental , Toxinas Marinhas/análise , Plâncton/química , Compostos de Espiro/análise , Biodiversidade , Cromatografia Líquida , Demografia , Noruega , Densidade Demográfica , Espectrometria de Massas em Tandem
9.
Toxins (Basel) ; 10(7)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986427

RESUMO

Tetrodotoxin (TTX) is one of the most potent neurotoxins known. It was originally thought to only occur in puffer fish but has now been identified in twelve different classes of freshwater and marine organisms, including bivalves. Despite being one of the world’s most studied biotoxins, its origin remains uncertain. There is contradictory evidence regarding the source of TTX and its pathway through food webs. To date, the distribution of TTX has not been examined in bivalves. In the present study, 48 Paphies australis, a TTX-containing clam species endemic to New Zealand, were collected. Thirty clams were dissected, and organs and tissues pooled into five categories (siphons, digestive gland, adductor muscles, and the ‘rest’) and analyzed for TTX using liquid chromatography-mass spectrometry (LC-MS). The micro-distribution of TTX was visualized in the remaining 18 individuals using an immunohistological technique incorporating a TTX-specific monoclonal antibody. The LC-MS analysis revealed that siphons contained the highest concentrations of TTX (mean 403.8 µg/kg). Immunohistochemistry analysis showed TTX in the outer cells of the siphons, but also in the digestive system, foot, and gill tissue. Observing TTX in organs involved in feeding provides initial evidence to support the hypothesis of an exogenous source in P. australis.


Assuntos
Bivalves/química , Tetrodotoxina/análise , Poluentes Químicos da Água/análise , Animais , Bivalves/parasitologia , Cromatografia Líquida , Monitoramento Ambiental , Trato Gastrointestinal/química , Brânquias/química , Imuno-Histoquímica , Músculos/química , Nova Zelândia , Espectrometria de Massas em Tandem , Trematódeos/química
10.
PeerJ ; 6: e5003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967721

RESUMO

Environmentally induced epigenetic changes may contribute to phenotypic plasticity, increase adaptive potential in changing environments, and play a key role in the establishment and spread of invasive species in new habitats. In this study, we used methylation-sensitive amplified polymorphism (MSAP) to assess environmentally induced DNA methylation changes in a globally invasive clonal ascidian, Didemnum vexillum. We tested the effect of increasing temperature (19, 25 and 27 °C) and decreasing salinity (34, 32, 30, 28 and 26 practical salinity units (PSU)) on global DNA methylation, growth and survival rates. Exposure to 27 °C resulted in significant changes in DNA methylation over time. Growth also decreased in colonies exposed to high temperatures, suggesting they were under thermal stress. In contrast, no differences in growth nor DNA methylation patterns were observed in colonies exposed to a decreasing salinity gradient, potentially due to prior adaptation. The results of this study show that environmental stress can induce significant global DNA methylation changes in an invasive marine invertebrate on very rapid timescales, and that this response varies depending on the type, magnitude, and duration of the stressor. Changes in genomic DNA methylation and the rate of growth may act to 'buy survival time' under stressful conditions, expanding the distribution limits of this globally invasive species.

11.
Front Microbiol ; 9: 3153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619217

RESUMO

Paralytic shellfish toxin producing dinoflagellates have negatively impacted the shellfish aquaculture industry worldwide, including in Australia and New Zealand. Morphologically identical cryptic species of dinoflagellates that may differ in toxicity, in particular, species of the former Alexandrium tamarense species complex, co-occur in Australia, as they do in multiple regions in Asia and Europe. To understand the dynamics and the ecological drivers of the growth of each species in the field, accurate quantification at the species level is crucial. We have developed the first quantitative polymerase chain reaction (qPCR) primers for A. australiense, and new primers targeting A. ostenfeldii, A. catenella, and A. pacificum. We showed that our new primers for A. pacificum are more specific than previously published primer pairs. These assays can be used to quantify planktonic cells and cysts in the water column and in sediment samples with limits of detection of 2 cells/L for the A. catenella and A. australiense assays, 2 cells/L and 1 cyst/mg sediment for the A. pacificum assay, and 1 cells/L for the A. ostenfeldii assay, and efficiencies of >90%. We utilized these assays to discriminate and quantify co-occurring A. catenella, A. pacificum, and A. australiense in samples from the east coast of Tasmania, Australia.

12.
J Xenobiot ; 8(1): 7674, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30701062

RESUMO

The UV-filter benzophenone and the anti-inflammatory diclofenac are commonly detected in the environment. The aim of this study was to assess the multigenerational effects of chronic exposure to low concentrations of these chemicals on toxicity and DNA methylation levels in the copepod Gladioferens pectinatus. Acute toxicity tests were conducted to determine the sensitivity of G. pectinatus to the chemicals. All chemicals impacted breeding, hatching and egg viability. Diclofenac (1 mg.L-1) reduced the number of eggs per gravid female. Benzophenone (0.5 mg.L-1) decreased egg hatching success. Exposure to the reference toxicant copper (0.02 mg.L-1) led to unsuccessful hatching. Effects on DNA methylation was estimated by the percentage of 5- methylcytosine. The treatments resulted in strong differences in DNA methylation with increased methylation in the exposed animals. The two chemicals impacted both egg viability and the induction of differential DNA methylation, suggesting potential intra- and trans-generational evolutionary effects.

13.
Mar Drugs ; 15(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767092

RESUMO

Ciguatera Fish Poisoning (CFP) is increasing across the Pacific and the distribution of the causative dinoflagellates appears to be expanding. Subtle differences in thecal plate morphology are used to distinguish dinoflagellate species, which are difficult to determine using light microscopy. For these reasons we sought to develop a Quantitative PCR assay that would detect all species from both Gambierdiscus and Fukuyoa genera in order to rapidly screen environmental samples for potentially toxic species. Additionally, a specific assay for F. paulensis was developed as this species is of concern in New Zealand coastal waters. Using the assays we analyzed 31 samples from three locations around New Zealand and the Kingdom of Tonga. Fourteen samples in total were positive for Gambierdiscus/Fukuyoa and two samples were also positive using the F. paulensis assay. Samples from the Kermadec Islands were further characterized using high-throughput sequencing metabarcoding. The majority of reads corresponded to Gambierdiscus species with three species identified at all sites (G. australes, G. honu and G. polynesiensis). This is the first confirmed identification of G. polynesiensis, a known ciguatoxin producer, in New Zealand waters. Other known toxin-producing genera were also detected, included Alexandrium, Amphidinium, Azadinium, Dinophysis, Ostreopsis, and Prorocentrum.


Assuntos
Intoxicação por Ciguatera , Dinoflagelados/genética , Animais , Bioensaio , Dinoflagelados/classificação , Meio Ambiente , Toxinas Marinhas , Nova Zelândia , Oceanos e Mares , Filogenia , Reação em Cadeia da Polimerase
14.
Mar Drugs ; 15(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696400

RESUMO

Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs), which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed. Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus cells were isolated, cultured, and DNA extracted and sequenced to determine the species present. Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry (LC-MS/MS). The species isolated were G. australes, which produced MTX-1 (ranging from 3 to 36 pg/cell), and G. polynesiensis, which produced neither MTX-1 nor, unusually, any known CTXs. Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical northern region of New Zealand, and so the risk may increase with warming seas and shift in the distribution of Gambierdiscus species.


Assuntos
Intoxicação por Ciguatera/etiologia , Ciguatoxinas/toxicidade , Dinoflagelados/genética , Dinoflagelados/isolamento & purificação , Peixes/parasitologia , Animais , Ilhas , Nova Zelândia , Espectrometria de Massas em Tandem
15.
Harmful Algae ; 65: 61-70, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28526120

RESUMO

Two isolates of a new tropical, epiphytic dinoflagellate species, Gambierdiscus honu sp. nov., were obtained from macroalgae sampled in Rarotonga, Cook Islands, and from North Meyer Island, Kermadec Islands. Gambierdiscus honu sp. nov. had the common Gambierdiscus Kofoidian plate formula: Po, 3', 6″, 6C?, 6 or 7S, 5‴, 1p and 2⁗. The characteristic morphological features of this species were its relatively small short dorsoventral length and width and the shape of individual plates, in particular the combination of the hatchet-shaped 2' and pentagonal 3' plates and the length to width ratio of the antapical 1p plate. The combination of these characteristics plus the smooth thecal surface and equal sized 1⁗ and 2⁗ plates differentiated this species from other Gambierdiscus species. The phylogenetic analyses supported the unique description. Both isolates of G. honu produced the putative maitotoxin (MTX)-3 analogue, but neither produced ciguatoxin (CTX) or MTX. Extracts of G. honu were shown to be highly toxic to mice by intraperitoneal injection (0.2mg/kg), although less toxic by gavage. It is possible that toxins other than putative MTX-3 are produced.


Assuntos
Dinoflagelados/classificação , Alga Marinha/parasitologia , Animais , Ciguatoxinas/metabolismo , Misturas Complexas/toxicidade , Dinoflagelados/genética , Dinoflagelados/isolamento & purificação , Dinoflagelados/ultraestrutura , Injeções Intraperitoneais , Toxinas Marinhas/metabolismo , Camundongos , Oxocinas/metabolismo , Filogenia , Polinésia
16.
J Eukaryot Microbiol ; 64(5): 691-706, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28211202

RESUMO

Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates.


Assuntos
Ciguatoxinas/metabolismo , Dinoflagelados/enzimologia , Perfilação da Expressão Gênica/métodos , Policetídeo Sintases/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Vias Biossintéticas , Dinoflagelados/genética , Dinoflagelados/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos
17.
Harmful Algae ; 55: 137-149, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073527

RESUMO

In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1-L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.


Assuntos
Dinoflagelados/classificação , Dinoflagelados/fisiologia , Filogenia , Evolução Biológica , DNA Ribossômico/genética , Dinoflagelados/genética , Especiação Genética , Variação Genética , Especificidade da Espécie
18.
Harmful Algae ; 60: 45-56, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28073562

RESUMO

Ciguatera fish poisoning (CFP) has been reported for many years in Rarotonga, Cook Islands, and has had the world's highest reported incidence of this illness for the last 20 years. Following intensive sampling to understand the distribution of the causative organisms of CFP, an undescribed Gambierdiscus species was isolated from the Rarotongan lagoon. Gambierdiscus cheloniae sp. nov. has the common Gambierdiscus Kofoidian plate formula (except for a variability in the number of precingular plates in aberrant cells): Po, 3', 6″ (7″), 6C?, 6 or 7S, 5'″, 1p and 2″″. The 2' plate is hatchet shaped and the dorsal end of 1p is pointed and the relatively narrow 1p plate. Morphologically G. cheloniae is similar to the genetically closely related species G. pacificus, G. toxicus and G. belizeanus, although smaller (depth and length) than G. toxicus. The apical pore plate varies from those of G. belizeanus and G. pacificus, which are shorter and narrower, and from G. toxicus, which is larger. G. cheloniae also differs from G. pacificus in the shape of the 2' plate. The description of this new species is supported by phylogenetic analyses using three different gene regions. G. cheloniae produced the putative maitotoxin-3 analogue, MTX-3, but neither maitotoxin or monitored ciguatoxin. Extracts of G. cheloniae were shown to be highly toxic to mice by intraperitoneal (i.p.) injection, although they were less toxic by gavage. It is possible that this species produces toxins other than putative MTX-3.


Assuntos
Dinoflagelados/classificação , Animais , Intoxicação por Ciguatera/induzido quimicamente , Dinoflagelados/citologia , Dinoflagelados/genética , Genes de Protozoários/genética , Ilhas , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos , Filogenia , Polinésia , Especificidade da Espécie
19.
Mar Genomics ; 19: 75-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25482898

RESUMO

The mitochondria are the main source of cellular energy production and have an important role in development, fertility, and thermal limitations. Adaptive mitochondrial DNA mutations have the potential to be of great importance in determining aspects of the life history of an organism. Phylogenetic analyses of the globally invasive marine ascidian Didemnum vexillum using the mitochondrial cytochrome c oxidase 1 (COX1) coding region, revealed two distinct clades. Representatives of one clade (denoted by 'B') are geographically restricted to D. vexillum's native region (north-west Pacific Ocean, including Japan), whereas members of the other clade (denoted by 'A') have been introduced and become invasive in temperate coastal areas around the world. Persistence of clade B's restricted distribution may reflect it being inherently less invasive than clade A. To investigate this we sought to determine if the two clades differ significantly in other mitochondrial genes of functional significance, specifically, alterations in amino acids encoded in mitochondrial enzyme subunits. Differences in functional mitochondrial genes could indicate an increased ability for clade A colonies to tolerate a wider range of environmental temperature. Full mitochondrial genomic sequences from D. vexillum clades A and B were obtained and they predict significant sequence differences in genes encoding for enzymes involved in oxidative phosphorylation. Diversity levels were relatively high and showed divergence across almost all genes, with p-distance values between the two clades indicating recent divergence. Both clades showed an excess of rare variants, which is consistent with balancing selection or a recent population expansion. Results presented here will inform future research focusing on examining the functional properties of the corresponding mitochondrial respiration enzymes, of A and B clade enzymes. By comparing closely related taxa that have differing distributions it is possible to identify genes and phenotypes suited to particular environments. The examination of mitochondrial genotypes, and associated enzyme functioning, across populations may aid in our understanding of thermal tolerance and environmental adaptation.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genoma Mitocondrial/genética , Fenótipo , Urocordados/genética , Distribuição Animal , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Genética Populacional , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie
20.
Mar Drugs ; 12(3): 1361-76, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24608972

RESUMO

The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.


Assuntos
Dinoflagelados/metabolismo , Toxinas Marinhas/biossíntese , Animais , DNA/isolamento & purificação , Primers do DNA , Replicação do DNA/efeitos dos fármacos , Dinoflagelados/genética , Meio Ambiente , Monitoramento Ambiental , Dosagem de Genes , Limite de Detecção , Nova Zelândia , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Água do Mar , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA