Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.960
Filtrar
1.
Mass Spectrom Rev ; : e21741, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34719806

RESUMO

Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.

9.
11.
SSM Popul Health ; 16: 100953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815996

RESUMO

Public health advocates highlight the role of corporate actors and food marketing in shaping diets and health. This study analyses insider-oriented communications in food industry magazines in the UK to analyse actions and narratives related to health and nutrition, providing insights into relatively overlooked areas of marketing strategy including inter-firm dynamics. From a sample of four specialized food industry magazines covering the main industry segments we identified 319 articles (published 2007-2018) mentioning health or nutrition together with industry actions affecting the food environment. We identified health-related actions and analysed underlying strategies through content and thematic analyses. Health and nutrition have a rapidly growing role in food marketing strategy. Content analysis revealed a focus on ultra-processed foods, as well as product and nutrient-specific trends including increased health-based marketing of snacks and "protein rich" products. Health-related actions predominantly relied on consumer agency rather than invoking structural food environment changes. Thematic analysis identified proactive and defensive marketing strategies. Proactive approaches included large investments in health-related promotion of ultra-processed foods which are made highly visible to competitors, and the reliance on a "credence goods" differentiation strategies. Defensive strategies included a 'Red Queen' effect, whereby firms take health-related actions to keep up with competitors. These competitive strategies can create challenges, as well as some opportunities, for public health promotion. Challenges can include undermining efforts to support product comparison and healthier choice, and limiting firms' engagement in specific health improving actions. Systematic analysis of health-oriented marketing strategies could support more effective public health intervention.

12.
Sci Total Environ ; : 151593, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808177

RESUMO

Federal policy changes in the management of carbon emissions from power plants offer a potent real-world example for examining air-land-water interactions and their implications for coastal water quality. We integrate models of energy (Integrated Planning Model (IPM)), air quality (Community Multiscale Air Quality (CMAQ) and water quality (SPAtially Referenced Regression On Watershed attributes (SPARROW)) to investigate the potential water quality impacts of policy-driven changes in total nitrogen deposition in watersheds draining to US coastal areas. We estimate the combined effects of three recently proposed energy policy scenarios, population growth, and climate change. We decompose the combined effects into the roles of the individual components on the supply of riverine nitrogen for the entire US and eight coastal regions. We find that population growth is the most important driver of changes in coastal nitrogen flux. Energy policies play a minor role in offsetting the negative effects of population growth, although the effect varies by energy policy and region. The greatest population and policy effects are projected for the Gulf of Mexico. Given limited reductions in nitrogen emissions and deposition associated with energy policies, the net effect of policy and population changes is an increase in total nitrogen flux to all estuaries relative to the 2010 baseline. While population growth increases flux, and energy policies decrease flux in all regions, climate change can either increase or decrease flux depending on the region. That is because the relatively large individual effects of temperature and precipitation on watershed nitrogen processes work in opposing directions. The net result of the offsetting nature of individual climate processes varies in both magnitude and direction by coastal region. Further research is needed to sort out individual temperature and precipitation effects in different regions.

14.
PLoS One ; 16(11): e0260234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793571

RESUMO

To better understand the contribution of wildlife to the dissemination of Salmonella and antimicrobial resistance in Salmonella and Escherichia coli, we examined whole-genome sequence data from Salmonella and E. coli isolates collected from raccoons (Procyon lotor) and environmental sources on farms in southern Ontario. All Salmonella and phenotypically resistant E. coli collected from raccoons, soil, and manure pits on five swine farms as part of a previous study were included. We assessed for evidence of potential transmission of these organisms between different sources and farms utilizing a combination of population structure assessments (using core-genome multi-locus sequence typing), direct comparisons of multi-drug resistant isolates, and epidemiological modeling of antimicrobial resistance (AMR) genes and plasmid incompatibility (Inc) types. Univariable logistic regression models were fit to assess the impact of source type, farm location, and sampling year on the occurrence of select resistance genes and Inc types. A total of 159 Salmonella and 96 resistant E. coli isolates were included. A diversity of Salmonella serovars and sequence types were identified, and, in some cases, we found similar or identical Salmonella isolates and resistance genes between raccoons, soil, and swine manure pits. Certain Inc types and resistance genes associated with source type were consistently more likely to be identified in isolates from raccoons than swine manure pits, suggesting that manure pits are not likely a primary source of those particular resistance determinants for raccoons. Overall, our data suggest that transmission of Salmonella and AMR determinants between raccoons and swine manure pits is uncommon, but soil-raccoon transmission appears to be occurring frequently. More comprehensive sampling of farms, and assessment of farms with other livestock species, as well as additional environmental sources (e.g., rivers) may help to further elucidate the movement of resistance genes between these various sources.

15.
Anal Chem ; 93(45): 14966-14975, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726890

RESUMO

The unanticipated discovery of recent ultra-high-resolution ion mobility spectrometry (IMS) measurements revealing that isotopomers─compounds that differ only in the isotopic substitution sites─can be separated has raised questions as to the physical basis for their separation. A study comparing IMS separations for two isotopomer sets in conjunction with theory and simulations accounting for ion rotational effects provides the first-ever prediction of rotation-mediated shifts. The simulations produce observable mobility shifts due to differences in gas-ion collision frequency and translational-to-rotational energy transfer. These differences can be attributed to distinct changes in the moment of inertia and center of mass between isotopomers. The simulations are in broad agreement with the observed experiments and consistent with relative mobility differences between isotopomers. These results provide a basis for refining IMS theory and a new foundation to obtain additional structural insights through IMS.


Assuntos
Espectrometria de Mobilidade Iônica
17.
ACS Infect Dis ; 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34752055

RESUMO

Multidrug-resistant bacterial infections have become a global threat. We recently disclosed that the known IKK-ß inhibitor IMD-0354 and subsequent analogues abrogate colistin resistance in several Gram-negative strains. Herein, we report the activity of a second-generation library of IMD-0354 analogues incorporating a benzimidazole moiety as an amide isostere. We identified several analogues that show increased colistin potentiation activity against Gram-negative bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...