Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Filtros adicionais











Intervalo de ano
1.
Artigo em Inglês | MEDLINE | ID: mdl-31407532

RESUMO

OBJECTS: The diffusion-based spherical mean technique (SMT) provides a novel model to relate multi-b-value diffusion magnetic resonance imaging (MRI) data to features of tissue microstructure. We propose the first clinical application of SMT to image the brain of patients with multiple sclerosis (MS) and investigate clinical feasibility and translation. METHODS: Eighteen MS patients and nine age- and sex-matched healthy controls (HCs) underwent a 3.0 Tesla scan inclusive of clinical sequences and SMT images (isotropic resolution of 2 mm). Axial diffusivity (AD), apparent axonal volume fraction (Vax ), and effective neural diffusivity (Dax ) parametric maps were fitted. Differences in AD, Vax , and Dax between anatomically matched regions reflecting different tissues types were estimated using generalized linear mixed models for binary outcomes. RESULTS: Differences were seen in all SMT-derived parameters between chronic black holes (cBHs) and T2-lesions (P ≤ 0.0016), in Vax and AD between T2-lesions and normal appearing white matter (NAWM) (P < 0.0001), but not between the NAWM and normal WM in HCs. Inverse correlations were seen between Vax and AD in cBHs (r = -0.750, P = 0.02); in T2-lesions Dax values were associated with Vax (r = 0.824, P < 0.0001) and AD (r = 0.570, P = 0.014). INTERPRETATIONS: SMT-derived metrics are sensitive to pathological changes and hold potential for clinical application in MS patients.

2.
Neuroimage ; 201: 116026, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31326569

RESUMO

Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in vivo on clinical MRI scanners. However, application, characterization, and validation of these models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion "signal" model (diffusion tensor imaging, DTI) and two commonly implemented "microstructural" models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and descending pathways, as well as various gray matter regions. We then aim to validate the sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices of the tissue microenvironment provided by a histological template. We find that DTI indices are sensitive to a number of microstructural features, but lack specificity. The microstructural models also show sensitivity to a number of microstructure features; however, they do not capture the specific microstructural features explicitly modelled. Although often regarded as a simple extension of the brain in the central nervous system, it may be necessary to re-envision, or specifically adapt, diffusion microstructural models for application to the human spinal cord with clinically feasible acquisitions - specifically, adjusting, adapting, and re-validating the modeling as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter estimation (for example challenges of acquisition, artifacts, and processing).

3.
Neuroimage ; 200: 191-198, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31233908

RESUMO

The locus coeruleus (LC) is the major origin of norepinephrine in the central nervous system, and is subject to age-related and neurodegenerative changes, especially in disorders such as Parkinson's disease and Alzheimer's disease. Previous studies have shown that neuromelanin (NM)-sensitive MRI can be used to visualize the LC, and it is hypothesized that magnetization transfer (MT) effects are the primary source of LC contrast. The aim of this study was to characterize the MT effects in LC imaging by applying high spatial resolution quantitative MT (qMT) imaging to create parametric maps of the macromolecular content of the LC and surrounding tissues. Healthy volunteers (n = 26; sex = 17 F/9M; age = 41.0 ±â€¯19.1 years) underwent brain MRI on a 3.0 T scanner. qMT data were acquired using a 3D MT-prepared spoiled gradient echo sequence. A traditional NM scan consisting of a T1-weighted turbo spin echo sequence with MT preparation was also acquired. The pool-size ratio (PSR) was estimated for each voxel using a single-point qMT approach. The LC was semi-automatically segmented on the MT-weighted images. The MT-weighted images provided higher contrast-ratio between the LC and surrounding pontine tegmentum (PT) (0.215 ±â€¯0.031) than the reference images without MT-preparation (-0.005 ±â€¯0.026) and the traditional NM images (0.138 ±â€¯0.044). The PSR maps showed significant differences between the LC (0.090 ±â€¯0.009) and PT (0.188 ±â€¯0.025). The largest difference between the PSR values in the LC and PT was observed in the central slices, which also correspond to those with the highest contrast-ratio. These results highlight the role of MT in generating NM-related contrast in the LC, and should serve as a foundation for future studies aiming to quantify pathological changes in the LC and surrounding structures in vivo.

4.
Mol Ecol ; 28(10): 2573-2593, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30980781

RESUMO

Discovering genetic markers associated with phenotypic or ecological characteristics can improve our understanding of adaptation and guide conservation of key evolutionary traits. The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) of the northern Great Basin Desert, USA, demonstrated exceptional tolerance to high temperatures in the desert lakes where it resided historically. This trait is central to a conservation hatchery effort to protect the genetic legacy of the nearly extinct lake ecotype. We genotyped full-sibling families from this conservation broodstock and samples from the only two remaining, thermally distinct, native lake populations at 4,644 new single nucleotide polymorphisms (SNPs). Family-based genome-wide association testing of the broodstock identified nine and 26 SNPs associated with thermal tolerance (p < 0.05 and p < 0.1), measured in a previous thermal challenge experiment. Genes near the associated SNPs had complex functions related to immunity, growth, metabolism and ion homeostasis. Principal component analysis using the thermotolerance-related SNPs showed unexpected divergence between the conservation broodstock and the native lake populations at these loci. FST outlier tests on the native lake populations identified 18 loci shared between two or more of the tests, with two SNPs identified by all three tests (p < 0.01); none overlapped with loci identified by association testing in the broodstock. A recent history of isolation and the complex genetic and demographic backgrounds of Lahontan cutthroat trout probably limited our ability to find shared thermal tolerance loci. Our study extends the still relatively rare application of genomic tools testing for markers associated with important phenotypic or environmental characteristics in species of conservation concern.

5.
Magn Reson Med ; 82(2): 743-748, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30924198

RESUMO

PURPOSE: To measure the transverse relaxation time T2* in healthy human cervical spinal cord gray matter (GM) and white matter (WM) at 3T. METHODS: Thirty healthy volunteers were recruited. Axial images were acquired using an averaged multi-echo gradient-echo (mFFE) T2*-weighted sequence with 5 echoes. We used the signal equation for an mFFE sequence with constant dephasing gradients after each echo to jointly estimate the spin density and T2* for each voxel. RESULTS: No global difference in T2* was observed between all GM (41.3 ± 5.6 ms) and all WM (39.8 ± 5.4 ms). No significant differences were observed between left (43.2 ± 6.8 ms) and right (43.4 ± 5.5 ms) ventral GM, left (38.3 ± 6.1 ms) and right (38.6 ± 6.5 ms) dorsal GM, and left (39.4 ± 5.8 ms) and right (40.3 ± 5.8 ms) lateral WM. However, significant regional differences were observed between ventral (43.4 ± 5.7 ms) and dorsal (38.4 ± 6.0 ms) GM (p < 0.05), as well as between ventral (42.9 ± 6.5 ms) and dorsal (37.9 ± 6.2 ms) WM (p < 0.05). In analyses across slices, inferior T2* was longer than superior T2* in GM (44.7 ms vs. 40.1 ms; p < 0.01) and in WM (41.8 ms vs. 35.9 ms; p < 0.01). CONCLUSIONS: Significant differences in T2* are observed between ventral and dorsal GM, ventral and dorsal WM, and superior and inferior GM and WM. There is no evidence for bilateral asymmetry in T2* in the healthy cord. These values of T2* in the spinal cord are notably lower than most reported values of T2* in the cortex.

6.
Mult Scler ; : 1352458519833018, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30907234

RESUMO

BACKGROUND:: Assessing the degree of myelin injury in patients with multiple sclerosis (MS) is challenging due to the lack of magnetic resonance imaging (MRI) methods specific to myelin quantity. By measuring distinct tissue parameters from a two-pool model of the magnetization transfer (MT) effect, quantitative magnetization transfer (qMT) may yield these indices. However, due to long scan times, qMT has not been translated clinically. OBJECTIVES:: We aim to assess the clinical feasibility of a recently optimized selective inversion recovery (SIR) qMT and to test the hypothesis that SIR-qMT-derived metrics are informative of radiological and clinical disease-related changes in MS. METHODS:: A total of 18 MS patients and 9 age- and sex-matched healthy controls (HCs) underwent a 3.0 Tesla (3 T) brain MRI, including clinical scans and an optimized SIR-qMT protocol. Four subjects were re-scanned at a 2-week interval to determine inter-scan variability. RESULTS:: SIR-qMT measures differed between lesional and non-lesional tissue ( p < 0.0001) and between normal-appearing white matter (NAWM) of patients with more advanced disability and normal white matter (WM) of HCs ( p < 0.05). SIR-qMT measures were associated with lesion volumes, disease duration, and disability scores ( p ⩽ 0.002). CONCLUSION:: SIR-qMT at 3 T is clinically feasible and predicts both radiological and clinical disease severity in MS.

7.
Brain ; 142(3): 633-646, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.

8.
Neuroimage ; 184: 901-915, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300751

RESUMO

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Redes Neurais (Computação) , Medula Espinal/patologia , Humanos , Imagem por Ressonância Magnética/métodos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Sci Rep ; 8(1): 16512, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30410122

RESUMO

Resting state functional magnetic resonance imaging (fMRI) has been used to study human brain function for over two decades, but only recently has this technique been successfully translated to the human spinal cord. The spinal cord is structurally and functionally unique, so resting state fMRI methods developed and optimized for the brain may not be appropriate when applied to the cord. This report therefore investigates the relative impact of different acquisition and processing choices (including run length, echo time, and bandpass filter width) on the detectability of resting state spinal cord networks at 3T. Our results suggest that frequencies beyond 0.08 Hz should be included in resting state analyses, a run length of ~8-12 mins is appropriate for reliable detection of the ventral (motor) network, and longer echo times - yet still shorter than values typically used for fMRI in the brain - may increase the detectability of the dorsal (sensory) network. Further studies are required to more fully understand and interpret the nature of resting state spinal cord networks in health and in disease, and the protocols described in this report are designed to assist such studies.

10.
Magn Reson Med ; 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30329181

RESUMO

PURPOSE: The non-uniform fast Fourier transform (NUFFT) involves interpolation of non-uniformly sampled Fourier data onto a Cartesian grid, an interpolation that is slowed by complex, non-local data access patterns. A faster NUFFT would increase the clinical relevance of the plethora of advanced non-Cartesian acquisition methods. METHODS: Here we customize the NUFFT procedure for a radial trajectory and GPU architecture to eliminate the bottlenecks encountered when allowing for arbitrary trajectories and hardware. We call the result TRON, for TRajectory Optimized NUFFT. We benchmark the speed and accuracy TRON on a Shepp-Logan phantom and on whole-body continuous golden-angle radial MRI. RESULTS: TRON was 6-30× faster than the closest competitor, depending on test data set, and was the most accurate code tested. CONCLUSIONS: Specialization of the NUFFT algorithm for a particular trajectory yielded significant speed gains. TRON can be easily extended to other trajectories, such as spiral and PROPELLER. TRON can be downloaded at http://github.com/davidssmith/TRON.

11.
Mult Scler ; : 1352458518799583, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30230400

RESUMO

BACKGROUND: Cognitive impairment (CI) profoundly impacts quality of life for patients with multiple sclerosis (MS). Dysfunctional regulation of glutamate in gray matter (GM) has been implicated in the pathogenesis of MS by post-mortem pathological studies and in CI by in vivo magnetic resonance spectroscopy, yet GM pathology is subtle and difficult to detect using conventional T1- and T2-weighted magnetic resonance imaging (MRI). There is a need for high-resolution, clinically accessible imaging techniques that probe molecular changes in GM. OBJECTIVE: To study cortical GM pathology related to CI in MS using glutamate-sensitive chemical exchange saturation transfer (GluCEST) MRI at 7.0 Tesla (7T). METHODS: A total of 20 patients with relapsing-remitting MS and 20 healthy controls underwent cognitive testing, anatomical imaging, and GluCEST imaging. Glutamate-sensitive image contrast was quantified for cortical GM, compared between cohorts, and correlated with clinical measures of CI. RESULTS AND CONCLUSION: Glutamate-sensitive contrast was significantly increased in the prefrontal cortex of MS patients with accumulated disability ( p < 0.05). In addition, glutamate-sensitive contrast in the prefrontal cortex was significantly correlated with symbol digit modality test ( rS = -0.814) and choice reaction time ( rS = 0.772) scores in patients ( p < 0.05), suggesting that GluCEST MRI may have utility as a marker for GM pathology and CI.

12.
Brain ; 141(6): 1650-1664, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648581

RESUMO

Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect was also observed in controls whereby females demonstrated higher ventral network connectivity. Wilcoxon rank-sum tests detected no differences in average connectivity or power of low frequency fluctuations in patients compared to controls. The presence of lesions was, however, associated with local alterations in connectivity with differential effects depending on columnar location. The patient results suggest that spinal cord functional networks are generally intact in relapsing-remitting multiple sclerosis but that lesions are associated with focal abnormalities in intrinsic connectivity. These findings are discussed in light of the current literature on spinal cord functional MRI and the potential neurological underpinnings.

13.
J Neuroimaging ; 28(4): 380-388, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29676026

RESUMO

BACKGROUND AND PURPOSE: An imaging biomarker of myelin integrity is an unmet need in multiple sclerosis (MS). Selective inversion recovery (SIR) quantitative magnetization transfer imaging (qMT) provides assays of myelin content in the human brain. We previously translated the SIR method to 7T and incorporated a rapid turbo field echo (TFE) readout for whole-brain imaging within clinically acceptable scan times. We herein provide histological validation and test in vivo feasibility and applicability of the SIR-TFE protocol in MS. METHODS: Clinical (T1 - and T2 -weighted) and SIR-TFE MRI scans were performed at 7T in a postmortem MS brain and MRI data were acquired in 10 MS patients and 14 heathy volunteers in vivo. The following parameters were estimated from SIR data: the macromolecular-to-free water pool-size-ratio (PSR), the spin-lattice relaxation rate of water (R1f ), and the MT exchange rate (kmf ). Differences in SIR parameters across tissue types, eg, white matter lesions (WM-Ls) and normal appearing WM (NAWM) in patients, and normal white matter (NWM) in heathy volunteers were evaluated. Associations between SIR parameters and disability scores were assessed. RESULTS: For postmortem scans, correspondence was observed between WM-Ls and NAWM from histology and PSR/R1f values. In vivo differences were detected for PSR, R1f , and kmf between WM-Ls and NWM (P ≤ .041). Associations were seen between WM-Ls/ NAWM PSR and disability scores (r ≤ -.671, P ≤ .048). CONCLUSIONS: SIR-qMT at 7T provides sensitive, quantitative measures of myelin integrity for clinical and research applications.

14.
PLoS One ; 13(3): e0193839, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561895

RESUMO

T2*-weighted multi-echo gradient-echo magnetic resonance imaging and its reciprocal R2* are used in brain imaging due to their sensitivity to iron content. In patients with multiple sclerosis who display pathological alterations in iron and myelin contents, the use of R2* may offer a unique way to untangle mechanisms of disease. Coronal slices from 8 brains of deceased multiple sclerosis patients were imaged using a whole-body 7.0 Tesla MRI scanner. The scanning protocol included three-dimensional (3D) T2*-w multi-echo gradient-echo and 2D T2-w turbo spin echo (TSE) sequences. Histopathological analyses of myelin and iron content were done using Luxol fast blue and proteolipid myelin staining and 3,3'-diaminobenzidine tetrahydrochloride enhanced Turnbull blue staining. Quantification of R2*, myelin and iron intensity were obtained. Variations in R2* were found to be affected differently by myelin and iron content in different regions of multiple sclerosis brains. The data shall inform clinical investigators in addressing the role of T2*/R2* variations as a biomarker of tissue integrity in brains of MS patients, in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Meios de Contraste , Feminino , Humanos , Imagem Tridimensional , Imuno-Histoquímica , Ferro/metabolismo , Imagem por Ressonância Magnética/instrumentação , Imagem por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/metabolismo , Bainha de Mielina/metabolismo
15.
Magn Reson Med ; 80(5): 1824-1835, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29573356

RESUMO

PURPOSE: To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. THEORY AND METHODS: SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (tI/ tD ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R1 of free water (R1f ), and the rate of MT exchange (kmf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal tI /tD combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. RESULTS: Two optimal sampling schemes were determined: (i) a 5-point scheme (kmf estimated) and (ii) a 4-point scheme (kmf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing kmf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. CONCLUSIONS: qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB0 , B1+, and T1 ) when optimized tI -tD combinations are selected.

16.
NMR Biomed ; 31(4): e3894, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29388719

RESUMO

The purpose of this work was to evaluate the feasibility and reproducibility of the spherical mean technique (SMT), a multi-compartmental diffusion model, in the spinal cord of healthy controls, and to assess its ability to improve spinal cord characterization in multiple sclerosis (MS) patients at 3 T. SMT was applied in the cervical spinal cord of eight controls and six relapsing-remitting MS patients. SMT provides an elegant framework to model the apparent axonal volume fraction vax , intrinsic diffusivity Dax , and extra-axonal transverse diffusivity Dex_perp (which is estimated as a function of vax and Dax ) without confounds related to complex fiber orientation distribution that reside in diffusion MRI modeling. SMT's reproducibility was assessed with two different scans within a month, and SMT-derived indices in healthy and MS cohorts were compared. The influence of acquisition scheme on SMT was also evaluated. SMT's vax , Dax , and Dex_perp measurements all showed high reproducibility. A decrease in vax was observed at the site of lesions and normal appearing white matter (p < 0.05), and trends towards a decreased Dax and increased Dex_perp were seen. Importantly, a twofold reduction in acquisition yielded similarly high accuracy with SMT. SMT provides a fast, reproducible, and accurate method to improve characterization of the cervical spinal cord, and may have clinical potential for MS patients.

17.
Magn Reson Med ; 79(2): 806-814, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28474409

RESUMO

PURPOSE: The ability to evaluate pathological changes in the spinal cord in multiple sclerosis (MS) is limited because T1 - and T2 -w MRI imaging are not sensitive to biochemical changes in vivo. Amide proton transfer (APT) chemical exchange saturation transfer (CEST) can indirectly detect amide protons associated with proteins and peptides, potentially providing more pathological specificity. Here, we implement APT CEST in the cervical spinal cord of healthy and MS cohorts at 3T. METHODS: APT CEST of the cervical spinal cord was obtained in a cohort of 10 controls and 10 MS patients using a novel respiratory correction methodology. APT was quantified using two methods: 1) APTw , based off the conventional magnetization transfer ratio asymmetry, and 2) ΔAPT, a spatial characterization of APT changes in MS patients relative to the controls. RESULTS: Respiratory correction yielded highly reproducible z-spectra in white matter (intraclass correlation coefficient = 0.82). APTw signals in normal-appearing white matter (NAWM) of MS patients were significantly different from healthy controls (P = 0.04), whereas ΔAPT of MS patients highlighted large APT differences in NAWM. CONCLUSION: Respiration correction in the spinal cord is necessary to accurately quantify APT CEST, which can provide unique biochemical information regarding disease processes within the spinal cord. Magn Reson Med 79:806-814, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

18.
Neuroimage ; 168: 437-451, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28684332

RESUMO

Magnetic resonance imaging (MRI) of the human spinal cord at 7T has been demonstrated by a handful of research sites worldwide, and the spinal cord remains one of the areas in which higher fields and resolution could have high impact. The small diameter of the cord (∼1 cm) necessitates high spatial resolution to minimize partial volume effects between gray and white matter, and so MRI of the cord can greatly benefit from increased signal-to-noise ratio and contrasts at ultra-high field (UHF). Herein we review the current state of UHF spinal cord imaging. Technical challenges to successful UHF spinal cord MRI include radiofrequency (B1) nonuniformities and a general lack of optimized radiofrequency coils, amplified physiological noise, and an absence of methods for robust B0 shimming along the cord to mitigate image distortions and signal losses. Numerous solutions to address these challenges have been and are continuing to be explored, and include novel approaches for signal excitation and acquisition, dynamic shimming and specialized shim coils, and acquisitions with increased coverage or optimal slice angulations.

19.
Neuroradiology ; 59(12): 1251-1263, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986653

RESUMO

PURPOSE: We sought to measure quantitative magnetization transfer (qMT) properties of the substantia nigra pars compacta (SNc) in patients with Parkinson's disease (PD) and healthy controls (HCs) using a full qMT analysis and determine whether a rapid single-point measurement yields equivalent results for pool size ratio (PSR). METHODS: Sixteen different MT-prepared MRI scans were obtained at 3 T from 16 PD patients and eight HCs, along with B1, B0, and relaxation time maps. Maps of PSR, free and macromolecular pool transverse relaxation times ([Formula: see text], [Formula: see text]) and rate of MT exchange between pools (k mf ) were generated using a full qMT model. PSR maps were also generated using a single-point qMT model requiring just two MT-prepared images. qMT parameter values of the SNc, red nucleus, cerebral crus, and gray matter were compared between groups and methods. RESULTS: PSR of the SNc was the only qMT parameter to differ significantly between groups (p < 0.05). PSR measured via single-point analysis was less variable than with the full MT model, provided slightly better differentiation of PD patients from HCs (area under curve 0.77 vs. 0.75) with sensitivity of 0.75 and specificity of 0.87, and was better than transverse relaxation time in distinguishing PD patients from HCs (area under curve 0.71, sensitivity 0.87, and specificity 0.50). CONCLUSION: The increased PSR observed in the SNc of PD patients may provide a novel biomarker of PD, possibly associated with an increased macromolecular content. Single-point PSR mapping with reduced variability and shorter scan times relative to the full qMT model appears clinically feasible.


Assuntos
Imagem por Ressonância Magnética/métodos , Doença de Parkinson/patologia , Substância Negra/patologia , Idoso , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imagem Tridimensional , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
20.
Mult Scler J Exp Transl Clin ; 3(3): 2055217317730097, 2017 Jul-Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28932410

RESUMO

BACKGROUND: Optic neuritis (ON) is one of the most common presentations of multiple sclerosis (MS). Magnetic resonance imaging (MRI) of the optic nerves is challenging because of retrobulbar motion, orbital fat and susceptibility artifacts from maxillary sinuses; therefore, axonal loss is investigated with the surrogate measure of a single heuristically defined point along the nerve as opposed to volumetric investigation. OBJECTIVE: The objective of this paper is to derive optic nerve volumetrics along the entire nerve length in patients with MS and healthy controls in vivo using high-resolution, clinically viable MRI. METHODS: An advanced, isotropic T2-weighted turbo spin echo MRI was applied to 29 MS patients with (14 patients ON+) or without (15 patients ON-) history of ON and 42 healthy volunteers. An automated tool was used to estimate and compare whole optic nerve and surrounding cerebrospinal fluid radii along the length of the nerve. RESULTS AND CONCLUSION: Only ON+ MS patients had a significantly reduced optic nerve radius compared to healthy controls in the central segment of the optic nerve. Using clinically available MRI methods, we show and quantify ON volume loss for the first time in MS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA