Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Nano ; 14(8): 10294-10304, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658451


The lower limit of metal hydride nanoconfinement is demonstrated through the coordination of a molecular hydride species to binding sites inside the pores of a metal-organic framework (MOF). Magnesium borohydride, which has a high hydrogen capacity, is incorporated into the pores of UiO-67bpy (Zr6O4(OH)4(bpydc)6 with bpydc2- = 2,2'-bipyridine-5,5'-dicarboxylate) by solvent impregnation. The MOF retained its long-range order, and transmission electron microscopy and elemental mapping confirmed the retention of the crystal morphology and revealed a homogeneous distribution of the hydride within the MOF host. Notably, the B-, N-, and Mg-edge XAS data confirm the coordination of Mg(II) to the N atoms of the chelating bipyridine groups. In situ 11B MAS NMR studies helped elucidate the reaction mechanism and revealed that complete hydrogen release from Mg(BH4)2 occurs as low as 200 °C. Sieverts and thermogravimetric measurements indicate an increase in the rate of hydrogen release, with the onset of hydrogen desorption as low as 120 °C, which is approximately 150 °C lower than that of the bulk material. Furthermore, density functional theory calculations support the improved dehydrogenation properties and confirm the drastically lower activation energy for B-H bond dissociation.

Angew Chem Int Ed Engl ; 57(46): 15045-15050, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134041


Methanol is a major fuel and chemical feedstock currently produced from syngas, a CO/CO2 /H2 mixture. Herein we identify formate binding strength as a key parameter limiting the activity and stability of known catalysts for methanol synthesis in the presence of CO2 . We present a molybdenum phosphide catalyst for CO and CO2 reduction to methanol, which through a weaker interaction with formate, can improve the activity and stability of methanol synthesis catalysts in a wide range of CO/CO2 /H2 feeds.

Chem Commun (Camb) ; 48(58): 7268-70, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22706565


Electrodes composed of silicon nanoparticles (SiNP) were prepared by slurry casting and then electrochemically tested in a fluoroethylene carbonate (FEC)-based electrolyte. The capacity retention after cycling was significantly improved compared to electrodes cycled in a traditional ethylene carbonate (EC)-based electrolyte.