Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 703: 29-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261000

RESUMO

Non-heme iron enzymes play key roles in antibiotic, neurotransmitter, and natural product biosynthesis, DNA repair, hypoxia regulation, and disease states. These enzymes had been refractory to traditional bioinorganic spectroscopic methods. Thus, we developed variable-temperature variable-field magnetic circular dichroism (VTVH MCD) spectroscopy to experimentally define the excited and ground ligand field states of non-heme ferrous enzymes (Solomon et al., 1995). This method provides detailed geometric and electronic structure insight and thus enables a molecular level understanding of catalytic mechanisms. Application of this method across the five classes of non-heme ferrous enzymes has defined that a general mechanistic strategy is utilized where O2 activation is controlled to occur only in the presence of all cosubstrates.


Assuntos
Domínio Catalítico , Dicroísmo Circular , Dicroísmo Circular/métodos , Ferro/química , Ferro/metabolismo , Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Oxigênio/metabolismo , Oxigênio/química , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo
2.
J Am Chem Soc ; 146(31): 21208-21213, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046226

RESUMO

Methane is one of the most potent greenhouse gases; developing technology for its abatement is essential for combating climate change. Copper zeolites can activate methane at low temperatures and pressures, demonstrating promise for this technology. However, a barrier to industrial implementation is the inability to recycle the Cu(II) active site. Anaerobic active site regeneration has been reported for copper-loaded mordenite, where it is proposed that water oxidizes Cu(I) formed from the methane reaction, producing H2 gas as a byproduct. However, this result has been met with skepticism given the overall reaction is thermodynamically unfavorable. In this study, we use X-ray absorption and electron paramagnetic resonance spectroscopies to study the role of water in copper zeolite methane oxidation. We find that water does not oxidize Cu(I) to Cu(II) in CH4-reacted Cu-MOR. Further, using isotope label mass spectrometry, we detail an alternate source of the hydrogen byproduct. We uncover that, although water does not oxidize Cu(I), it has the potential to facilitate low temperature methane abatement through promotion of product decomposition to carbon dioxide and H2.

3.
J Am Chem Soc ; 146(22): 14942-14947, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775712

RESUMO

Synthetic side-on peroxide-bound dicopper(II) (SP) complexes are important for understanding the active site structure/function of many copper-containing enzymes. This work highlights the formation of new {CuII(µ-η2:η2-O22-)CuII} complexes (with electronic absorption and resonance Raman (rR) spectroscopic characterization) using tripodal N3ArOH ligands at -135 °C, which spontaneously participate in intramolecular phenolic H-atom abstraction (HAA). This results in the generation of bis(phenoxyl radical)bis(µ-OH)dicopper(II) intermediates, substantiated by their EPR/UV-vis/rR spectroscopic signatures and crystal structural determination of a diphenoquinone dicopper(I) complex derived from ligand para-C═C coupling. The newly observed chemistry in these ligand-Cu systems is discussed with respect to (a) our Cu-MeAN (tridentate N,N,N',N',N″-pentamethyldipropylenetriamine)-derived model SP species, which was unreactive toward exogenous monophenol addition (J. Am. Chem. Soc. 2012, 134, 8513-8524), emphasizing the impact of intramolecularly tethered ArOH groups, and (b) recent advances in understanding the mechanism of action of the tyrosinase (Ty) enzyme.

4.
J Am Chem Soc ; 146(19): 13066-13082, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688016

RESUMO

Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.

5.
Chem Rev ; 124(5): 2352-2418, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408190

RESUMO

This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.

6.
J Am Chem Soc ; 146(9): 6061-6071, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385349

RESUMO

The highly reactive binuclear [Cu2O]2+ active site in copper zeolites activates the inert C-H bond of methane at low temperatures, offering a potential solution to reduce methane flaring and mitigate atmospheric methane levels. While substantial progress has been made in understanding the activation of methane by this core, one critical aspect, the active site's spin, has remained undetermined. In this study, we use variable-temperature, variable-field magnetic circular dichroism spectroscopy to define the ground state spin of the [Cu2O]2+ active sites in Cu-CHA and Cu-MFI. This novel approach allows for site-selective determination of the magnetic exchange coupling between the two copper centers of specific [Cu2O]2+ cores in a heterogeneous mixture, circumventing the drawbacks of bulk magnetic techniques. These experimental findings are coupled to density functional theory calculations to elucidate magnetostructural correlations in copper zeolites that are different from those of homogeneous binuclear Cu(II) complexes. The different spin states for the [Cu2O]2+ cores have different reactivities governed by how methane approaches the active site. This introduces a new understanding of zeolite topological control on active site reactivity.

7.
J Am Chem Soc ; 145(42): 22866-22870, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844210

RESUMO

Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.


Assuntos
Cobre , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/química , Cobre/química , Domínio Catalítico , Fenóis/química , Catecóis/química , Cinética
8.
J Am Chem Soc ; 145(37): 20610-20623, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696009

RESUMO

Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote S-nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation. Specifically, the factors that instill CuII with S-nitrosylating capabilities and modulate activity are not well understood. To address this issue, we investigated the influence of the primary and secondary coordination sphere on CuII-catalyzed S-nitrosylation by developing a series of azurin variants with varying catalytic capabilities. We have employed a multidimensional approach involving electronic absorption, S and Cu K-edge XAS, EPR, and resonance Raman spectroscopies together with QM/MM computational analysis to examine the relationships between structure and molecular mechanism in this reaction. Our findings have revealed that kinetic competency is correlated with three balancing factors, namely Cu-S bond strength, Cu spin localization, and relative S(ps) vs S(pp) contributions to the ground state. Together, these results support a reaction pathway that proceeds through the attack of the Cu-S bond rather than electrophilic addition to CuII or radical attack of SCys. The insights gained from this work provide not only a deeper understanding of SNO in biology but also a basis for designing artificial and tunable SNO enzymes to regulate NO and prevent diseases due to SNO dysregulation.


Assuntos
Azurina , Metaloproteínas , Cobre , Catálise , Eletrônica
9.
Nat Chem ; 15(12): 1780-1786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640854

RESUMO

Although Cu2+ is ubiquitous, the relativistic destabilization of the 5d orbitals makes the isoelectronic Au2+ exceedingly rare, typically stabilized only through Au-Au bonding or by using redox non-innocent ligands. Here we report the perovskite Cs4AuIIAuIII2Cl12, an extended solid with mononuclear Au2+ sites, which is stable to ambient conditions and characterized by single-crystal X-ray diffraction. The 2+ oxidation state of Au was assigned using 197Au Mössbauer spectroscopy, electron paramagnetic resonance, and magnetic susceptibility measurements, with comparison to paramagnetic and diamagnetic analogues with Cu2+ and Pd2+, respectively, as well as to density functional theory calculations. This gold perovskite offers an opportunity to study the optical and electronic transport of the uncommon Au2+/3+ mixed-valence state and the characteristics of the elusive Au2+ ion coordinated to simple ligands. Compared with the perovskite Cs2AuIAuIIICl6, which has been studied since the 1920s, Cs4AuIIAuIII2Cl12 exhibits a 0.7 eV reduction in optical absorption onset and a 103-fold increase in electronic conductivity.

10.
J Am Chem Soc ; 145(34): 18977-18991, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590931

RESUMO

Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)═O intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)═O active sites and their selectivity for reactivity enabled by the π-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/ß splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory.


Assuntos
Eletrônica , Ferro , Raios X , Espectroscopia por Absorção de Raios X , Teoria da Densidade Funcional
11.
J Am Chem Soc ; 145(28): 15230-15250, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37414058

RESUMO

The extradiol dioxygenases (EDOs) and intradiol dioxygenases (IDOs) are nonheme iron enzymes that catalyze the oxidative aromatic ring cleavage of catechol substrates, playing an essential role in the carbon cycle. The EDOs and IDOs utilize very different FeII and FeIII active sites to catalyze the regiospecificity in their catechol ring cleavage products. The factors governing this difference in cleavage have remained undefined. The EDO homoprotocatechuate 2,3-dioxygenase (HPCD) and IDO protocatechuate 3,4-dioxygenase (PCD) provide an opportunity to understand this selectivity, as key O2 intermediates have been trapped for both enzymes. Nuclear resonance vibrational spectroscopy (in conjunction with density functional theory calculations) is used to define the geometric and electronic structures of these intermediates as FeII-alkylhydroperoxo (HPCD) and FeIII-alkylperoxo (PCD) species. Critically, in both intermediates, the initial peroxo bond orientation is directed toward extradiol product formation. Reaction coordinate calculations were thus performed to evaluate both the extra- and intradiol O-O cleavage for the simple organic alkylhydroperoxo and for the FeII and FeIII metal catalyzed reactions. These results show the FeII-alkylhydroperoxo (EDO) intermediate undergoes facile extradiol O-O bond homolysis due to its extra e-, while for the FeIII-alkylperoxo (IDO) intermediate the extradiol cleavage involves a large barrier and would yield the incorrect extradiol product. This prompted our evaluation of a viable mechanism to rearrange the FeIII-alkylperoxo IDO intermediate for intradiol cleavage, revealing a key role in the rebinding of the displaced Tyr447 ligand in this rearrangement, driven by the proton delivery necessary for O-O bond cleavage.


Assuntos
Dioxigenases , Dioxigenases/química , Compostos Férricos , Catecóis/química , Análise Espectral , Compostos Ferrosos
12.
J Am Chem Soc ; 145(29): 16015-16025, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37441786

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kß X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kß valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kß XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.


Assuntos
Peróxido de Hidrogênio , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Polissacarídeos/metabolismo , Domínio Catalítico , Espectrometria por Raios X
13.
ACS Catal ; 13(3): 1906-1915, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37377676

RESUMO

The industrial implementation of a direct methane to methanol process would lead to environmental and economic benefits. Copper zeolites successfully execute this reaction at relatively low temperatures, and mordenite zeolites in particular enable high methanol production. When loaded to a Cu/Al ratio of 0.45, mordenite (Si/Al 5 to 9) has been shown to host three active sites: two [CuOCu]2+ sites labeled MOR1 and MOR2, and a mononuclear [CuOH]+ site. Also at low copper loadings (Cu/Al < 0.20), mordenite has been demonstrated to activate methane, but its active site has never been reported. Here, we investigate Na+ mordenite with varying copper loadings to better understand copper speciation in mordenite. At low copper loadings, we uncover an unidentified active site ('MOR3') with a strong overlap with the [CuOH]+ site's spectroscopic signal. By changing the co-cation, we selectively speciate more MOR3 relative to [CuOH]+, allowing its identification as a [CuOCu]2+ site. Active site identification in heterogeneous catalysts is a frequent problem due to signal overlap. By changing cation composition, we introduce an innovative method for simplifying a material to allow better analysis. This has implications for the study of Cu zeolites for methane to methanol and NOx catalysis, but also for studying and tuning heterogeneous catalysts in general.

14.
J Am Chem Soc ; 145(24): 13284-13301, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294874

RESUMO

In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.


Assuntos
Ceruloplasmina , Histidina , Ceruloplasmina/química , Ligantes , Cobre/química , Trametes , Eletricidade Estática , Lacase/metabolismo
15.
J Am Chem Soc ; 145(21): 11735-11744, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195014

RESUMO

Lytic polysaccharide monooxygenases have received significant attention as catalytic convertors of biomass to biofuel. Recent studies suggest that its peroxygenase activity (i.e., using H2O2 as an oxidant) is more important than its monooxygenase functionality. Here, we describe new insights into peroxygenase activity, with a copper(I) complex reacting with H2O2 leading to site-specific ligand-substrate C-H hydroxylation. [CuI(TMG3tren)]+ (1) (TMG3tren = 1,1,1-Tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) and a dry source of hydrogen peroxide, (o-Tol3P═O·H2O2)2 react in the stoichiometry, [CuI(TMG3tren)]+ + H2O2 → [CuI(TMG3tren-OH)]+ + H2O, wherein a ligand N-methyl group undergoes hydroxylation giving TMG3tren-OH. Furthermore, Fenton-type chemistry (CuI + H2O2 → CuII-OH + ·OH) is displayed, in which (i) a Cu(II)-OH complex could be detected during the reaction and it could be separately isolated and characterized crystallographically and (ii) hydroxyl radical (·OH) scavengers either quenched the ligand hydroxylation reaction and/or (iii) captured the ·OH produced.


Assuntos
Cobre , Peróxido de Hidrogênio , Cobre/química , Peróxido de Hidrogênio/química , Hidroxilação , Ligantes , Oxigenases de Função Mista/química , Radical Hidroxila/química , Oxirredução
16.
FEBS Lett ; 597(1): 65-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36178078

RESUMO

Tyrosinase is the most predominant member of the coupled binuclear copper (CBC) protein family. The recent trapping and spectroscopic definition of the elusive catalytic ternary intermediate (enzyme/O2 /monophenol) of tyrosinase dictates a monooxygenation mechanism that revises previous proposals and involves cleavage of the µ-η2 :η2 -peroxide dicopper(II) O-O bond to accept the phenolic proton, followed by monophenolate coordination to copper concomitant with aromatic hydroxylation by the non-protonated µ-oxo. Here, we compare and contrast previously proposed and current mechanistic models for monophenol monooxygenation of tyrosinase. Next, we discuss how these recent insights provide new opportunities towards uncovering structure-function relationships in CBC enzymes, as well as understanding fundamental principles for O2 activation and reactivity by bioinorganic active sites.


Assuntos
Cobre , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Cobre/metabolismo , Oxigenases de Função Mista/metabolismo , Fenóis , Domínio Catalítico , Oxigênio/metabolismo
17.
Inorg Chem ; 62(7): 2959-2981, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36534001

RESUMO

Thirteen boronated cyanometallates [M(CN-BR3)6]3/4/5- [M = Cr, Mn, Fe, Ru, Os; BR3 = BPh3, B(2,4,6,-F3C6H2)3, B(C6F5)3] and one metalloboratonitrile [Cr(NC-BPh3)6]3- have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t2g)5 electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD C-terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t1u and t2u orbitals reproduced t1u/t2u → t2g excitation energies. Many [M(CN-BR3)6]3/4- complexes exhibited highly electrochemically reversible redox couples. Notably, the reduction formal potentials of all five [M(CN-B(C6F5)3)6]3- anions scale with the LMCT energies, and Mn(I) and Cr(II) compounds, [K(18-crown-6)]5[Mn(CN-B(C6F5)3)6] and [K(18-crown-6)]4[Cr(CN-B(C6F5)3)6], are surprisingly stable. Continuous-wave and pulsed electron paramagnetic resonance (EPR; hyperfine sublevel correlation) spectra were collected for all Cr(III) complexes; as expected, 14N hyperfine splittings are greater for (Ph4As)3[Cr(NC-BPh3)6] than for (Ph4As)3[Cr(CN-BPh3)6].

18.
Inorg Chem ; 61(42): 16520-16527, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36223761

RESUMO

A particle swarm optimization (PSO) algorithm is described for the fitting of ground-state spin Hamiltonian parameters from variable-temperature/variable-field (VTVH) magnetic circular dichroism (MCD) data. This PSO algorithm is employed to define the ground state of two catalytic intermediates from a flavodiiron protein (FDP), a class of enzymes with nitric oxide reductase activity. The bimetallic iron active site of this enzyme proceeds through a biferrous intermediate and a mixed ferrous-{FeNO}7 intermediate during the catalytic cycle, and the MCD spectra of these intermediates are presented and analyzed. The fits of the spin Hamiltonians are shown to provide important geometric and electronic insight into these species that is compared and contrasted with previous reports.


Assuntos
Ferro , Fenômenos Magnéticos , Dicroísmo Circular , Modelos Moleculares , Domínio Catalítico , Ferro/química
19.
J Am Chem Soc ; 144(42): 19305-19316, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36219763

RESUMO

The direct conversion of methane to methanol would have a wide reaching environmental and industrial impact. Copper-containing zeolites can perform this reaction at low temperatures and pressures at a previously defined O2-activated [Cu2O]2+ site. However, after autoreduction of the copper-containing zeolite mordenite and removal of the [Cu2O]2+ active site, the zeolite is still methane reactive. In this study, we use diffuse reflectance UV-vis spectroscopy, magnetic circular dichroism, resonance Raman spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy to unambiguously define a mononuclear [CuOH]+ as the CH4 reactive active site of the autoreduced zeolite. The rigorous identification of a mononuclear active site allows a reactivity comparison to the previously defined [Cu2O]2+ active site. We perform kinetic experiments to compare the reactivity of the [CuOH]+ and [Cu2O]2+ sites and find that the binuclear site is significantly more reactive. From the analysis of density functional theory calculations, we elucidate that this increased reactivity is a direct result of stabilization of the [Cu2OH]2+ H-atom abstraction product by electron delocalization over the two Cu cations via the bridging ligand. This significant increase in reactivity from electron delocalization over a binuclear active site provides new insights for the design of highly reactive oxidative catalysts.


Assuntos
Zeolitas , Zeolitas/química , Cobre/química , Metano/química , Domínio Catalítico , Metanol/química , Ligantes , Modelos Moleculares , Oxigênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Cátions
20.
Proc Natl Acad Sci U S A ; 119(33): e2205619119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939688

RESUMO

Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a µ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the µ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the µ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the µ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated µ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.


Assuntos
Proteínas de Bactérias , Melaninas , Monofenol Mono-Oxigenase , Oxigênio , Fenóis , Streptomyces , Sítios de Ligação , Catálise , Cobre/química , Melaninas/biossíntese , Monofenol Mono-Oxigenase/química , Oxigênio/metabolismo , Peróxidos/química , Fenóis/química , Streptomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA