Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(31): 16488-16500, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342317

RESUMO

Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.


Assuntos
Proteínas/química , Cinética , Fenômenos Ópticos , Ligação Proteica , Proteínas/metabolismo
2.
J Biol Chem ; 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273015

RESUMO

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remain elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry, and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants, and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated, and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility, and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.

3.
Angew Chem Int Ed Engl ; 59(27): 10774-10779, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32167227

RESUMO

Interactions between biomolecules control the processes of life in health and their malfunction in disease, making their characterization and quantification essential. Immobilization- and label-free analytical techniques are desirable because of their simplicity and minimal invasiveness, but they struggle with quantifying tight interactions. Here, we show that mass photometry can accurately count, distinguish by molecular mass, and thereby reveal the relative abundances of different unlabelled biomolecules and their complexes in mixtures at the single-molecule level. These measurements determine binding affinities over four orders of magnitude at equilibrium for both simple and complex stoichiometries within minutes, as well as the associated kinetics. These results introduce mass photometry as a rapid, simple and label-free method for studying sub-micromolar binding affinities, with potential for extension towards a universal approach for characterizing complex biomolecular interactions.


Assuntos
Proteínas/química , Espectrofotometria Ultravioleta/métodos , Cinética
4.
Water Res ; 116: 76-85, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314210

RESUMO

Wastewater treatment plants (WWTPs) are important point sources for micropollutants, which are harmful to freshwater organisms. Ozonation of wastewater is a powerful option to abate micropollutants, but may result in the formation of the potentially toxic oxidation by-product bromate in bromide-containing wastewaters. This study investigates options to reduce bromate formation during wastewater ozonation by (i) reducing the bromide concentration of the wastewater, (ii) lowering the ozone dose during wastewater treatment and (iii) adding hydrogen peroxide to limit the lifetime of ozone and quench the intermediates of the bromate formation pathway. Two examples demonstrate that a high share of bromide in wastewater can originate from single point sources (e.g., municipal waste incinerators or landfills). The identification of major point sources requires laborious sampling campaigns, but may facilitate the reduction of the bromide load significantly. To reduce the bromate formation by lowering the ozone dose interferes with the aim to abate micropollutants. Therefore, an additional treatment is necessary to ensure the elimination of micropollutants. Experiments at a pilot-plant illustrate that a combined treatment (ozone/powdered activated carbon) allows to eliminate micropollutants with low bromate yields. Furthermore, the addition of hydrogen peroxide was investigated at bench-scale. The bromate yields could be reduced by ∼50% and 65% for a hydrogen peroxide dose of 5 and 10 mg L-1, respectively. In conclusion, there are options to reduce the bromate formation during wastewater ozonation, however, they are not simple with sometimes limited efficiency.


Assuntos
Bromatos , Águas Residuárias , Brometos , Ozônio , Poluentes Químicos da Água , Purificação da Água
5.
Environ Sci Technol ; 50(18): 9825-34, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27525579

RESUMO

Bromide measurements and mass balances in the catchments of major Swiss rivers revealed that chemical industry and municipal waste incinerators are the most important bromide sources and account for ∼50% and ∼20%, respectively, of the ∼2000 tons of bromide discharged in the Rhine river in 2014 in Switzerland. About 100 wastewater treatment plants (WWTPs) will upgrade their treatment for micropollutant abatement in the future to comply with Swiss regulations. An upgrade with ozonation may lead to unintended bromate formation in bromide-containing wastewaters. Measured bromide concentrations were <0.05 mg L(-1) in ∼75% of 69 WWTPs, while they ranged from 0.4 to ∼50 mg L(-1) in WWTPs with specific bromide sources (e.g., municipal waste incinerators, landfill leachate, and chemical industry). Wastewater ozonation formed little bromate at specific ozone doses of ≤0.4 mg O3/mg DOC, while the bromate yields were almost linearly correlated to the specific ozone dose for higher ozone doses. Molar bromate yields for typical specific ozone doses in wastewater treatment (0.4-0.6 mg O3/mg DOC) are ≤3%. In a modeled extreme scenario (in which all upgraded WWTPs release 10 µg L(-1) of bromate), bromate concentrations increased by <0.4 µg L(-1) in major Swiss rivers and by several micrograms per liter in receiving water bodies with a high fraction of municipal wastewater.


Assuntos
Bromatos , Águas Residuárias , Brometos , Ozônio , Eliminação de Resíduos Líquidos , Água , Poluentes Químicos da Água , Purificação da Água
6.
Water Res ; 71: 318-29, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25655201

RESUMO

Trichloramine is a hazardous disinfection by-product that is of particular relevance in indoor swimming pools. To better understand its fate in pool waters, apparent second order rate constants (kapp) at pH 7 for its reaction with several model compounds were determined. kapp values at pH 7 for nitrogenous compounds were found to increase in the following order: ammonia âˆ¼ amides (∼10(-2)-10(-1) M(-1) s(-1)) < primary amines (∼10(-1)-10(0) M(-1) s(-1)) < relevant body fluid compounds (l-histidine, creatinine) (∼10(0)-10(1) M(-1) s(-1)) < secondary amines (∼10(1)-10(2) M(-1) s(-1)) < trimethylamine (∼10(3) M(-1) s(-1)). kapp values at pH 7 of trichloramine with hydroxylated aromatic compounds (∼10(2)-10(5) M(-1) s(-1)) are higher than for the nitrogenous compounds and depend on the number and position of the hydroxyl groups (phenol < hydroquinone < catechol < resorcinol). The measurement of kapp as a function of pH revealed that mainly the deprotonated species react with trichloramine. The reaction of trichloramine with Suwannee River and Pony Lake fulvic acid standards showed a decrease of their reactivity upon chlorination, which can be related to the electron donating capacity and the SUVA254. Chlorinated nitrogenous compounds (e.g. uric acid) also have a reduced reactivity with trichloramine. Hence, the residual chlorine in pool water hinders a fast consumption of trichloramine. This explains why trichloramine degradation in pool water is lower than expected from the reactivity with the estimated bather input. Trichloramine also has the potential to form secondary disinfection by-products such as chlorinated aromatic compounds or chloroform by electron transfer or Cl(+)-transfer reactions. The chloroform formation from the reaction of trichloramine with resorcinol occurs with a similar yield and rate as for chlorination of resorcinol. Since the trichloramine concentration in pool water is commonly about one order of magnitude lower than the free chlorine concentration, its contribution to the disinfection by-product formation is assumed to be minor in most cases but might be relevant for few precursors (e.g. phenols) that react faster with trichloramine than with free chlorine.


Assuntos
Cloretos/química , Cloro/química , Clorofórmio/química , Desinfetantes/química , Compostos de Nitrogênio/química , Piscinas , Poluentes Químicos da Água/química , Halogenação , Cinética
7.
Water Res ; 56: 280-91, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24699420

RESUMO

Trichloramine, one of the three inorganic chloramines (mono-, di- and trichloramine), is a problematic disinfection by-product in recreational pool water since it causes skin and eye irritations as well as irritations of the respiratory tract. The most commonly used chloramine mitigation strategy in pool water is UV treatment. Experiments with membrane inlet mass spectrometry (MIMS) confirmed that inorganic chloramines are effectively degraded by UV irradiation with low-pressure (LP) and medium-pressure (MP) mercury lamps (apparent quantum yields (QY): NH2Cl = 0.50 (LP) and 0.31 (MP) mol einstein(-1), NHCl2: 1.06 (LP) and 0.85 (MP) mol einstein(-1)). Trichloramine showed the fastest depletion with a quantum yield slightly above 2 mol einstein(-1) in purified (LP and MP) and pool water (MP). This high quantum yield can partly be explained by reactions involving OH radicals (purified water) and the reaction of trichloramine with moieties formed during UV irradiation of pool water. The presence of free chlorine affects trichloramine degradation (QY: ∼1.5 mol einstein(-1)) since it scavenges OH radicals and competes with trichloramine for reactive species (e.g. organic amines). Measurements in a pool facility revealed that the installed UV reactors degraded trichloramine by 40-50% as expected from laboratory experiments. However, trichloramine reduction in the pools was less pronounced than in the UV reactors. Model calculations combining pool hydraulics with formation/abatement of trichloramine showed that there was a fast trichloramine formation in the pool from the residual chlorine and nitrogenous precursors. The main factors influencing trichloramine concentrations in pool water are the free chlorine concentration and the UV treatment in combination with the recirculation rate through the water treatment system.


Assuntos
Cloraminas/química , Cloretos/química , Compostos de Nitrogênio/química , Piscinas , Raios Ultravioleta , Água/química , Desinfecção , Sequestradores de Radicais Livres , Cinética , Fotólise
8.
Water Res ; 58: 258-68, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24769062

RESUMO

Trichloramine is a hazardous disinfection by-product, which is present in chlorinated swimming pools. Although it is primarily taken up by inhalation, the concentration in pool water is important to monitor pool water quality and to assess trichloramine mitigation strategies. To date, scarce data is available on trichloramine concentration in pool water due to the lack of a suitable and easily applicable analytical method. This study presents a novel low cost, colorimetric method which is easy to operate and suitable for on-site measurements of trichloramine concentrations ≥0.05 µM (≥0.01 mg L(-1) as Cl2). The analytical method (termed "extraction-based ABTS method") consists of, (i) trichloramine stripping from pool water samples, (ii) passing it through a solid phase filter, composed of silica gel impregnated with sulfamic acid to eliminate interferences and (iii) trichloramine reaction with the indicator 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) to produce the coloured ABTS(•-) radical, which is measured at λ = 405 nm to determine the trichloramine concentration in the pool water sample. A comparison of the extraction-based ABTS method with membrane introduction mass spectrometry (MIMS) for 28 pool samples revealed a good correlation of the two methods. The trichloramine concentration in pool samples is correlated to HOCl, which is the most important factor for its formation. Other parameters such as combined chlorine and pH play a minor role while no correlation between trichloramine and the urea or the TOC concentration was observed. On-site measurements with MIMS in a wading pool over 6 days with a time resolution of 1 h confirmed that trichloramine concentrations strongly responded to changes in free chlorine concentrations. A diurnal measurement of trichloramine with a time resolution of 20 min revealed that trichloramine concentrations reacted quickly and sensitively to the bather load and that urea is probably not the main precursor for its formation.


Assuntos
Cloretos/análise , Colorimetria/métodos , Espectrometria de Massas/métodos , Compostos de Nitrogênio/análise , Piscinas , Água/análise , Fracionamento Químico/métodos , Cloro/análise , Cloro/química , Colorimetria/instrumentação , Desinfecção , Concentração de Íons de Hidrogênio , Espectrometria de Massas/instrumentação , Ureia/análise , Ureia/química
9.
Water Res ; 47(14): 4893-903, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23891540

RESUMO

Despite their potential carcinogenicity and probable formation during water disinfection processes, little is known about the occurrence of other nitro(so) compounds than a few specific N-nitroso compounds such as N-nitrosodimethylamine (NDMA). An analytical method was developed to monitor various nitro(so) compounds including N-nitrosamines based on the Griess colorimetric determination of nitrite generated by UV-254 nm photolysis of nitro(so) compounds after separation by HPLC (HPLC-Post Column UV photolysis/Griess reaction (HPLC-PCUV)). To differentiate N-nitro(so) compounds (i.e. UV-labile) from other nitro(so) and N-containing compounds (i.e. UV-resistant), a pre-treatment was established by photolyzing solid-phase extracted samples at 254 nm (1000 mJ/cm(2)) and thus removing N-nitro(so) compounds selectively. Considering a 1000-fold concentration factor and extraction efficiencies (57-83%) during solid phase extraction, the method detection limits ranged from 4 to 28 ng/L for dimethylnitramine and eight N-nitrosamines (EPA 8270 nine nitrosamines mixture except for N-nitrosodiphenylamine). For four pool waters, the UV-resistant groups accounted for more than 78% of the estimated total concentration of nitro(so) and other N-containing compounds (6.1-48.6 nM). Only one unknown UV-labile compound was detected in one pool water (2.0-7.9 nM). NDMA was most frequently detected and N-nitrosodipropylamine (NDPA) and N-nitrosodibutylamine (NDBA) were additionally detected in one pool water. Chloramination of a secondary wastewater effluent with NDMA (0.2 nM) and UV-resistant compounds (7.9 nM) from a pilot-scale municipal wastewater treatment plant led to a significant formation of not only unidentified UV-resistant compounds (67.8 nM) and UV-labile compounds (14.6 nM), but also identified nitrosamines such as NDMA (4.3 nM), N-nitrosopiperidine (1.8 nM), NDPA (0.5 nM), and NDBA (0.5 nM). Overall, the novel HPLC-PCUV system is a powerful screening tool for the detection of (un)known N-nitro(so) as well as other nitro(so) and UV-induced nitrite-producing compounds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nitrosaminas/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/instrumentação , Dimetilnitrosamina/análise , Desenho de Equipamento , Halogenação , Limite de Detecção , Fotólise , Extração em Fase Sólida , Piscinas , Raios Ultravioleta , Águas Residuárias/análise , Poluentes Químicos da Água/química
10.
Water Res ; 47(1): 79-90, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23098367

RESUMO

N-Nitrosamines, in particular N-nitrosodimethylamine (NDMA), are carcinogens, which occur as chlorine disinfection by-products (DBPs) in swimming pools and hot tubs. UV treatment is a commonly used technique in swimming pools for disinfection and DBP attenuation. UV irradiation is known to efficiently degrade N-nitrosamines. However, UV irradiation (at λ = 254 nm) of chlorinated dimethylamine (CDMA) and monochloramine, two NDMA precursors present in swimming pool water, resulted in a substantial UV-induced NDMA formation (~1-2% molar yield based on initial CDMA concentration) simultaneously to NDMA photolysis. Maximum NDMA concentrations were found at UV doses in the range used for advanced oxidation (350-850 mJ cm(-2)). Very similar behaviour was found for other chlorinated secondary amines, namely diethylamine and morpholine. Effectiveness of UV irradiation for N-nitrosamine abatement depends on initial N-nitrosamine and precursor concentrations and the applied UV dose. N-Nitrosamine formation is hypothesized to occur via the reaction of nitric oxide or peroxynitrite with the secondary aminyl radical, which are products from the photolysis of monochloramine and chlorinated secondary amines, respectively. Experiments with pool water showed that similar trends were observed under pool water conditions. UV treatment (UV dose: ~360 mJ cm(-2)) slightly increased NDMA concentration in pool water instead of the anticipated 50% abatement in the absence of NDMA precursors.


Assuntos
Aminas/química , Cloraminas/química , Hidrocarbonetos Clorados/química , Nitrosaminas/química , Piscinas , Raios Ultravioleta , Purificação da Água/métodos
11.
Environ Sci Technol ; 42(24): 9244-9, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174899

RESUMO

A global multimedia model is used to calculate the fate of polybrominated diphenyl ethers (PBDEs) in the environment. Special emphasis is given to the importance of direct photolysis, which has been shown to be an important degradation mechanism for highly brominated PBDEs and is believed to result in the formation of lower-brominated PBDEs. We show that the inclusion of direct photolysis decreases the overall persistence and long-range transport potential of most PBDEs, in particular the heavier ones. We develop a PBDE emission inventory and calculate environmental concentrations of different PBDEs. Differences between predicted concentrations and field data are assessed and possible reasons for these differences discussed. The formation of lighter PBDEs by debromination of deca-BDE is compared to direct emissions of lighter PBDE homologues. The model estimates that about 13% of the penta-BDE and about 2% of the tetra-BDE homologue found in the environment arise from the degradation of deca-BDE. Uncertainties of the model estimates are quantified and their implications for the findings of our study discussed.


Assuntos
Poluentes Ambientais/análise , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/síntese química , Modelos Químicos , Fotólise , Atmosfera/química , Meio Ambiente , Halogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...