Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 20(3): 329-334, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462464

RESUMO

Dissipationless currents from topologically protected states are promising for disorder-tolerant electronics and quantum computation. Here, we photogenerate giant anisotropic terahertz nonlinear currents with vanishing scattering, driven by laser-induced coherent phonons of broken inversion symmetry in a centrosymmetric Dirac material ZrTe5. Our work suggests that this phononic terahertz symmetry switching leads to formation of Weyl points, whose chirality manifests in a transverse, helicity-dependent current, orthogonal to the dynamical inversion symmetry breaking axis, via circular photogalvanic effect. The temperature-dependent topological photocurrent exhibits several distinct features: Berry curvature dominance, particle-hole reversal near conical points and chirality protection that is responsible for an exceptional ballistic transport length of ~10 µm. These results, together with first-principles modelling, indicate two pairs of Weyl points dynamically created by B1u phonons of broken inversion symmetry. Such phononic terahertz control breaks ground for coherent manipulation of Weyl nodes and robust quantum transport without application of static electric or magnetic fields.

2.
Phys Rev Lett ; 114(12): 126601, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860762

RESUMO

The site-dependent g factor of a single magnetic molecule, with intramolecular resolution, is demonstrated for the first time by low-temperature, high-magnetic-field scanning tunneling microscopy of dehydrogenated Mn-phthalocyanine molecules on Au(111). This is achieved by exploring the magnetic-field dependence of the extended Kondo effect at different atomic sites of the molecule. Importantly, an inhomogeneous distribution of the g factor inside a single molecule is revealed. Our results open up a new route to access local spin properties within a single molecule.

3.
J Phys Condens Matter ; 25(50): 505502, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24275545

RESUMO

We studied the mechanism of half-metallicity (HM) formation in transition-metal-doped conjugated carbon based structures by first-principles electronic structure simulations. It is found that the HM is a rather complex phenomenon, determined by the ligand field splitting of d-orbitals of the transition metal atoms, the exchange splitting and the number of valence electrons. Since most of the conjugated carbon based structures possess ligands with intermediate strength, the ordering of the d-orbital splitting is similar in all structures, and the HM properties evolve according to the number of valence electrons. Based on this insight we predict that Cr-, Fe- and Co-doped graphyne will show HM, while Mn- and Ni-doped graphyne will not. By tuning the number of valence electrons, we are thus able to control the emergence of HM and control the energy gaps evolving in the majority or minority spin channels.


Assuntos
Elétrons , Grafite/química , Metais/química , Teoria Quântica , Elementos de Transição/química , Modelos Moleculares
4.
Sci Rep ; 3: 1210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383378

RESUMO

The reversible control of a single spin of an atom or a molecule is of great interest in Kondo physics and a potential application in spin based electronics. Here we demonstrate that the Kondo resonance of manganese phthalocyanine molecules on a Au(111) substrate have been reversibly switched off and on via a robust route through attachment and detachment of single hydrogen atom to the magnetic core of the molecule. As further revealed by density functional theory calculations, even though the total number of electrons of the Mn ion remains almost the same in the process, gaining one single hydrogen atom leads to redistribution of charges within 3d orbitals with a reduction of the molecular spin state from S = 3/2 to S = 1 that directly contributes to the Kondo resonance disappearance. This process is reversed by a local voltage pulse or thermal annealing to desorb the hydrogen atom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...