Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.789
Filtrar
1.
Sci Rep ; 13(1): 1538, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707667

RESUMO

Patients with severe fever with thrombocytopenia syndrome (SFTS) had been confirmed to have immune dysfunction and were prone to invasive pulmonary aspergillosis (IPA), which was directly related to the increased mortality. The aim of this study was to investigate the predictors for IPA in SFTS patients, and the results were expected to be helpful for early identification of IPA and initiation of anti-fungal therapy. The study was performed to review laboratory confirmed SFTS patients in two tertiary hospitals in Shandong province (Qilu Hospital of Shandong University and Shandong Public Health Clinical Center) from April 2021 to August 2022. The enrolled patients were further divided into IPA group and non-IPA group. Demographic characteristics, clinical manifestations and laboratory parameters between IPA group and non-IPA group patients were analyzed and compared to identify the independent predictors for IPA by univariate analysis and multivariable logistic regression analysis. Sensitivity and specificity of independent predictors were evaluated by receiver operating characteristic (ROC) curve analysis. In total, 67 SFTS patients were enrolled with an average age of 64.7 (± 8.4) years old. The incidence of IPA was 32.8% (22/67). Mortality of patients in IPA group was 27.3% (6/22), which was significantly higher than that in non-IPA group. Results of univariate analysis showed that uncontrolled diabetes, central nervous system symptoms, platelet < 40 × 109/L, CD4+ T cell < 300/µL and CD8+ T cell < 400/µL were risk factors for development of IPA. These factors were further analyzed by multivariable logistic regression analysis and the results indicated that uncontrolled diabetes, platelet < 40 × 109/L, CD4+ T cell < 300/µL and CD8+ T cell < 400/µL could be recognized as independent predictors for IPA in SFTS patients. In conclusion, IPA is a serious complication for SFTS patients and increases mortality. It is necessary to early identify predictors of IPA for improving survival of SFTS patients.

2.
CNS Neurosci Ther ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36708130

RESUMO

AIMS: Amyloid beta (Aß) is an important pathological feature of Alzheimer's disease (AD). A disintegrin and metalloproteinase 10 (ADAM10) can reduce the production of toxic Aß by activating the nonamyloidogenic pathway of amyloid precursor protein (APP). We previously found that apicidin, which is a histone deacetylase (HDAC) inhibitor, can promote the expression of ADAM10 and reduce the production of Aß in vitro. This study was designed to determine the potential of apicidin treatment to reverse learning and memory impairments in an AD mouse model and the possible correlation of these effects with ADAM10. METHODS: Nine-month-old APP/PS1 mice and C57 mice received intraperitoneal injections of apicidin or vehicle for 2 months. At 11 months of age, we evaluated the memory performance of mice with Morris water maze (MWM) and context fear conditioning tests. The Aß levels were assessed in mouse brain using the immunohistochemical method and ELISA. The expression of corresponding protein involved in proteolytic processing of APP and the phosphorylation of tau were assessed by Western blotting. RESULTS: Apicidin reversed the deficits of spatial reference memory and contextual fear memory, attenuated the formation of Aß-enriched plaques, and decreased the levels of soluble and insoluble Aß40/42 in APP/PS1 mice. Moreover, apicidin significantly increased the expression of ADAM10, improved the level of sAPPα, and reduced the production of sAPPß, but did not affect the levels of phosphorylated tau in APP/PS1 mice. CONCLUSION: Apicidin significantly improves the AD symptoms of APP/PS1 mice by regulating the expression of ADAM10, which may contribute to decreasing the levels of Aß rather than decreasing the phosphorylation of tau.

3.
BMC Cancer ; 23(1): 87, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698167

RESUMO

BACKGROUND: Insulin-like growth factor-1 receptor (IGF-1R) promotes cell proliferation and migration and inhibitsapoptosis, all of which can contribute to the development of cancers. METHOD: This study investigated the effect and mechanism of IGF-1R in mediating the desensitization of hepatocellular carcinoma (HCC) to sorafenib. RESULTS: IGF-1R, highly expressed in the HCC cell lines SK-Hep1 and HepG2, promotes cell proliferation, migration, and anti-apoptosis through PI3K / Akt and RAS / Raf / ERK signaling pathways, resulting in HCC resistance to sorafenib. Knockdown of IGF-1R by RNA interference decreased proliferation and cell migration and upregulation of sorafenib-induced apoptosis of HCC cells. In vivo studies demonstrated that IGF-1R knockdown inhibited the growth of SK-Hep1 xenografts. CONCLUSION: These data are evidence that IGF-1R participates in regulating the survival and cell growth of HCC through the PI3K / Akt and RAS / Raf / ERK signaling pathways. Intervention in the expression of IGF-1R may increase the inhibitory effect of sorafenib on HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Receptor IGF Tipo 1/metabolismo , Proliferação de Células
4.
Artigo em Inglês | MEDLINE | ID: mdl-36700980

RESUMO

PURPOSE: This study aims to explore the expression of hnRNP K in cervical carcinogenesis and to investigate the regulatory role of hnRNP K on HPV16 oncogene expression as well as biological changes in cervical cancer cells. METHODS: In total 1042 subjects, including 573 with the normal cervix and 469 with different grades of cervical lesions were enrolled in this study to explore the association between hnRNP K and HPV16 oncogene expression in cervical carcinogenesis. Additionally, the Gene Omnibus (GEO) database was used to analyze hnRNP K mRNA expression in cervical cancerization. Meanwhile, the effects of hnRNP K on cell biological functions and HPV16 oncogene expression were investigated in Siha cells. Moreover, Function analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after ChIP-seq. RESULTS: hnRNP K was highly expressed in cervical cancer and precancerous lesions, and positively correlated with HPV16 E6, but negatively correlated with HPV16 E2 and HPV16 E2/E6 ratio. hnRNP K induced cell proliferation, inhibited apoptosis and caused cell cycle arrest in the S phase, and particularly increased HPV16 E6 protein expression. CONCLUSION: This study revealed that hnRNP K overexpression has important warning significance for the malignant transformation of cervical lesions, and could be used as a potential therapeutic target for inhibiting the carcinogenicity of HPV16 and prevention of cervical carcinogenesis.

5.
Traffic Inj Prev ; : 1-7, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662669

RESUMO

OBJECTIVE: The objective of this study is to identify and compare the contributing factors to pedestrian injury severity in pedestrian-vehicle crashes considering different land use patterns. METHODS: The pedestrian-vehicle crash data from 2007 to 2018 were collected from the North Carolina Department of Transportation (NCDOT). A total number of 15,807 observations with 72 categorical variables were included in the final dataset. Two mixed logit models were developed to analyze the crash dataset with segmentations of two dominant land use areas (i.e., residential and commercial). Fixed and random parameters were found in both models. Estimation results and marginal effects of significant explanatory variables were investigated. RESULTS: In general, the residential model has 24 fixed parameters and 3 random parameters. The commercial model has 31 fixed parameters and 3 random parameters. According to the estimated results, elder or drunk factors are found to have more impacts on severe injuries in residential areas. Large and mid-size vehicles increase the probability of severe injuries in commercial areas. The marginal effect values for severe injury at non-intersections have opposite signs in the two models. Besides, speed limits between 40 and 45 mph and factors related to poor visibility are more likely to result in severe pedestrian injuries. Coarse asphalt pavement can reduce the probability of severe pedestrian injuries. CONCLUSIONS: This study investigated the pedestrian injury severity in pedestrian-vehicle crashes considering two types of land use using a mixed logit approach. Based on the discussions of factors contributing to the pedestrian injury severity, policies and countermeasures to improve traffic safety are suggested. Above all, a mixed-use land development policy is recommended. Other suggestions are summarized below: (1) giving more considerations to older pedestrians when planning and designing residential areas; (2) strengthening laws and education against drunk driving and even drunk walking on/across the roadways; (3) increasing the frequency of the patrols and alcohol tests; (4) improving lighting conditions and road alignments; (5) establishing a limited-truck-passing-period policy especially in commercial areas; and (6) improving the pavement conditions wherever needed.

6.
Clin Transl Oncol ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694079

RESUMO

PURPOSE: The mechanism of methylation of HPV CpG sites in the occurrence and prognosis of cervical carcinogenesis remains unclear. We investigated the effects of demethylation of the CpG sites of E2 and E6, essential genes of HPV16 integration, on cervical cancer cell expression, integration, and proliferation. MATERIALS AND METHODS: HPV16-positive (Caski) cells were treated with different concentrations of the demethylation compound 5-aza-dc (0, 5, 10, 20 µmol/l) in vitro. After the intervention, the methylation statuses of HPV16 E2 and E6 were detected by TBS, the expression levels of E2 and E6 mRNA and protein were detected by real-time PCR and western blot, cell proliferation activity was detected by CCK8, and cell cycle and apoptosis were determined by FCM. GraphPad Prism version 8.4.2 and R version 4.2.3 were used for relevant data analyses. RESULTS: The methylation levels of HPV16 E2 and E6 CpG sites decreased gradually with increasing 5-aza-dc intervention concentrations. With decreasing E2 and E6 methylation rates, E2 expression increased, the E2/E6 ratio increased, E6 expression decreased, and the growth inhibition rate of Caski cells increased. E2 and E6 expression were negatively and positively correlated with their degrees of methylation respectively, while the E2/E6 mRNA to protein ratio was negatively correlated with the methylation degrees of E2 and E6. CONCLUSION: Demethylation can be used as a prospective treatment to affect HPV expression and persistent infection, providing a new theoretical basis for the clinical treatment of viral infections.

7.
J Ethnopharmacol ; : 116198, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36690307

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingyihuaji Formula (QYHJ), a widely used traditional Chinese medicine (TCM), has been used to treat patients with cancer in China. However, the effect and mechanism of QYHJ on pancreatic ductal adenocarcinoma (PDAC) remains unclear. AIM OF THE STUDY: This study aimed to explore the roles and evaluate the possible underlying molecular mechanisms of QYHJ and its core component in PDAC using label-free quantitative proteomics in conjunction with network pharmacology-based analysis. MATERIALS AND METHODS: By screening differentially expressed proteins (DEPs) in proteomics and QYHJ-predicted gene sets, we identified QYHJ-related PDAC targets annotated with bioinformatic analysis. A subcutaneous tumor model was established to assess the role of QYHJ in vivo. The effects of quercetin (Que), a core component of QYHJ, on cell proliferation, migration, invasion, apoptosis, and autophagy in SW1990 and PANC-1 cells were investigated in vitro. Immunohistochemistry, western blotting, mRFP-GFP-LC3 adenovirus, and kinase analysis were used to determine the underlying mechanisms. RESULTS: Bioinformatics analysis revealed that 41 QYHJ-related PDAC targets were closely related to the cellular response to nitrogen compounds, positive regulation of cell death, regulation of epithelial cell apoptotic processes, and chemokine signaling pathways. CASP3, SRC, STAT1, PTPN11, PKM, and PAK1 with high expression were identified as hub DEPs in the PPI network, and these DEPs were associated with poor overall survival and STAT 1, MAPK/ERK, and PI3K/Akt/mTOR signaling pathways in PDAC patients. QYHJ significantly promoted tumor death in nude mice. Moreover, quercetin inhibited the proliferation, migration, and invasion of PDAC cells. Additionally, Que induced apoptosis and autophagy in PDAC cells. Mechanistically, QYHJ and Que significantly activated STAT 1 and remarkably inhibited the MAPK/ERK and PI3K/Akt/mTOR signaling pathways in vivo and in vitro, respectively. Importantly, ERK1/2 inactivation contributes to que-induced apoptosis in SW1990 and PANC-1 cells. CONCLUSIONS: These results suggest that QYHJ and Que are promising anti-PDAC avenues that benefit from their multiform mechanisms.

8.
Anat Rec (Hoboken) ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655864

RESUMO

The effectiveness and safety of electroacupuncture (EA) for constipation have been confirmed by numerous clinical studies and experiments, and there are also studies on the efficacy of EA for Parkinson's disease (PD) motor symptoms. However, there are few researches on EA for PD constipation. Autophagy is thought to be involved in the mechanistic process of EA in the central nervous system (CNS) intervention in Parkinson's pathology. However, whether it has the same effect on the enteric nervous system (ENS) has not been elucidated. Therefore, we investigated whether EA at Tianshu (ST25) acupoint promotes the clearance of α-Syn and damaged mitochondria aggregated in the ENS in a model of rotenone-induced PD constipation. This study evaluated constipation symptoms by stool characteristics, excretion volume, and water content, and the expression levels of colonic ATG5, LC3II, and Parkin were detected by Western Blot (WB) and Real-Time Quantitative PCR (RT-qPCR). The relationship between the location of α-Syn and Parkin in the colonic ENS was observed by immunofluorescence (IF). The results showed that EA intervention significantly relieved the symptoms of rotenone-induced constipation in PD rats, reversed the rotenone-induced down-regulation of colonic ATG5, LC3II, and Parkin expression, and the positional relationship between colonic α-Syn and Parkin proved to be highly correlated. It is suggested that EA might be helpful in treating PD constipation by modulating Parkin-induced mitochondrial autophagy.

9.
Nat Commun ; 14(1): 221, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36639386

RESUMO

Imitating the natural photosynthesis to synthesize hydrocarbon fuels represents a viable strategy for solar-to-chemical energy conversion, where utilizing low-energy photons, especially near-infrared photons, has been the ultimate yet challenging aim to further improving conversion efficiency. Plasmonic metals have proven their ability in absorbing low-energy photons, however, it remains an obstacle in effectively coupling this energy into reactant molecules. Here we report the broadband plasmon-induced CO2 reduction reaction with water, which achieves a CH4 production rate of 0.55 mmol g-1 h-1 with 100% selectivity to hydrocarbon products under 400 mW cm-2 full-spectrum light illumination and an apparent quantum efficiency of 0.38% at 800 nm illumination. We find that the enhanced local electric field plays an irreplaceable role in efficient multiphoton absorption and selective energy transfer for such an excellent light-driven catalytic performance. This work paves the way to the technique for low-energy photon utilization.

10.
Carbohydr Polym ; 304: 120500, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641167

RESUMO

Carbonized polymer dots (CPDs) with satisfactory excitation-dependent-emission and biocompatibility had great potential in anti-counterfeiting fibres field. However, it was difficult for CPDs to combined into the fibres due to the unstable interaction between CPDs and spinnable polymer matrix. Polyethyleneimine (PEI) was used to modify CPDs (namely PEI-CPDs) for achieving stable interactions with sodium alginate (SA) by a simple method, which including the physical interaction between the amino groups of PEI-CPDs and carboxyl groups of SA and the chain entanglement between two types of polymer chains. Then alginate fibres based on PEI-CPDs (PEI-CPDs/CaALG fibres) were successfully prepared by wet-spinning for the first time with less loss of PEI-CPDs. The high mechanical strength, excellent thermal stability and good biocompatibility achieved by PEI-CPDs/CaALG fibres. Furthermore, the fibres exhibited the excitation-dependent-emission property. Anti-counterfeiting of the fibres was conducted on both textile and papers, which showed higher security than the existing anti-counterfeiting fibres.


Assuntos
Alginatos , Polietilenoimina , Polímeros , Corantes
11.
Int J Biol Macromol ; 230: 123202, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36639076

RESUMO

Divalent metal ions such as magnesium (Mg2+), manganese (Mn2+), and zinc (Zn2+) play important roles in regulating innate immune responses. Lipopolysaccharide stimulation led to increased intracellular Mn and Zn in macrophages. However, the effect of those metal ions in regulating lipopolysaccharide-induced innate immune responses remains unclear. Here, we uncovered that both Mn2+ and Zn2+ have immunostimulatory effects, which could potentiate the lipopolysaccharide-induced expression of interferon-stimulated genes (ISGs), cytokines and pro-inflammatory genes in a dose-dependent manner. Enhancement of lipopolysaccharide-induced innate immune gene expression by Mn2+ varies between 10 % and 900 %. Conversely, the chelating of Mn2+ almost totally diminished Mn2+-enhanced lipopolysaccharide-induced gene expression. In addition, Mn2+ exerted its ability to potentiate LPS-induced innate immune gene expression regardless of slight pH changes. Importantly, we found that Mn2+ potentiates lipopolysaccharide-induced immune responses independent of TLR4 but partially relies on cGAS-STING pathway. Further in vivo study showed that colloidal Mn2+ salt (Mn jelly [MnJ]) pretreatment exacerbated lipopolysaccharide-induced septic shock and mice death. In conclusion, we demonstrated that Mn2+ plays an essential role in boosting lipopolysaccharide-induced innate immune responses. These findings greatly expand the current understanding of the immunomodulatory potential of divalent metal Mn2+ and may provide a potential therapeutic target to prevent excessive immune responses.

12.
Microbiol Res ; 268: 127302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640720

RESUMO

In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.


Assuntos
Proteínas de Bactérias , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/metabolismo , GMP Cíclico , Bactérias/genética , Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
13.
Neural Regen Res ; 18(5): 947-954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254973

RESUMO

Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.

14.
Biosens Bioelectron ; 222: 115000, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525709

RESUMO

Designing photovoltaic materials with good photoelectric activity is the crucial to boost the sensitivity of photoelectrochemical (PEC) biosensors. To meet this concern, a Schottky-functionalized direct Z-scheme heterojunction photovoltaic material was proposed by electrodeposition of gold nanoparticles on two kinds of bismuth oxyhalide composites surface (bismuth oxybromide and bismuth oxyiodide with different but matched band gaps) (depAu/BiOI/BiOBr). Specifically, synergistic effect was achieved through the direct Z-scheme heterojunction formed by BiOBr and BiOI as well as the gold Schottky junction, resulting in the enhanced light harvest and photoelectric conversion efficiency. Meanwhile, combined with sandwich immunotechnology, a "signal-off" PEC biosensor was fabricated for highly sensitive detection of carcinoembryonic antigen (CEA). In which, using depAu/BiOI/BiOBr modified glassy carbon electrodes both as the photoactive sensing interface and capture antibody loading matrix, polyethyleneimine copper complex encapsulated gold nanoclusters labeled detection antibody (Ab2-Au@PEI-Cu) as the quencher, the photocurrent decreased with the increasing target CEA introduced by sandwich immune reaction. The proposed smart PEC immunoassay platform exhibited a wide detection range (1.0 fg/mL-2.0 ng/mL) and a detection limit as low as 0.11 fg/mL with favorable selectivity and stability. In addition, this PEC sensing strategy can be easily extended for other tumor marker analysis, which offers a new perspective of using multiple bismuth oxyhalide as photoactive materials for early diseases diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Bismuto , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário , Ouro , Técnicas Eletroquímicas/métodos , Limite de Detecção , Imunoensaio/métodos
15.
Waste Manag ; 157: 141-148, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538835

RESUMO

Annually increasing electric vehicles will undoubtedly end in tremendous amount of waste LiFePO4 (LFP) batteries. In this work, a highly-efficient and easy-going solid-phase method is proposed for direct regeneration of the waste LFP cathode material (W-LFP). The W-LFP is successfully regenerated via heat treatment with the addition of Li2CO3, CNTs and glucose. After activation, the dispersibility of CNTs in water is improved, making it easier to mix well with other materials. Also, the hydroxyl and carboxyl groups on CNTs have a certain degree of reducibility, which is conducive to the reduction of Fe3+ to Fe2+. After subsequent heat treatment, the three-dimensional conductive network composed of CNTs greatly enhances the conductivity and the ionic diffusion coefficient of LFP, thereby improving its electrochemical performance. Meanwhile, the decay and regeneration mechanisms of LFP are investigated by characterization and electrochemical testing. The regenerated LFP achieves an excellent specific capacity of 155.47 mAh/g at 0.05 C, which is around 99% that of new LFP. Additionally, the costs of main consumption in the regeneration process only account for 33.7% the price of new LFP. This low-cost, high-value-added and solid-phase direct regeneration process is proved to have great economic and energy-saving potential, which is promising for recycling the waste LFP cathode materials.


Assuntos
Fontes de Energia Elétrica , Lítio , Lítio/química , Eletrodos , Reciclagem , Íons/química , Resíduos
16.
Pharmacol Res ; 187: 106618, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549409

RESUMO

Lipoxin A4 (LXA4) is one of the specialized pro-resolving lipid mediators proved to suppress the progression of atherosclerosis in vivo, but its clinical impacts in atherosclerotic patients is unclear. In this study, we assessed the prognostic impacts of LXA4 in patients with acute myocardial infarction (AMI). A total of 1569 consecutive AMI patients were prospectively recruited from March 2017 to January 2020. Plasma samples of AMI patients were collected, and LXA4 levels were determined using enzyme-linked immunosorbent assay. The primary outcome was major adverse cardiovascular event (MACE), a composite of all-cause death, recurrent MI, ischemic stroke, or ischemia-driven revascularization. Cox regression was used to assess associations between LXA4 and clinical outcomes. Overall, the median level of LXA4 was 5.637 (3.047-9.014) ng/mL for AMI patients. During a median follow-up of 786 (726-1108) days, high LXA4 (≥ 5.637 ng/mL) was associated with lower risk of MACE (hazard ratio [HR]: 0.73, 95% confidence interval [CI]: 0.60-0.89, P = 0.002), which was sustained in propensity score matching (HR: 0.73, 95% CI: 0.60-0.90, P = 0.004) and inverse probability weighting analysis (HR: 0.74, 95% CI: 0.61-0.90, P = 0.002). Combined with pro-inflammatory biomarker, patients with high levels of LXA4 (≥ 5.637 ng/mL) but low levels of high-sensitivity C-reactive protein (< 5.7 mg/L) acquired the lowest risk of MACE (HR: 0.68, 95% CI: 0.51-0.92, P = 0.012). In sum, high levels of LXA4 were associated with lower risk of recurrent ischemic events for AMI patients, which could serve as new therapeutic target to tackle cardiovascular inflammation.


Assuntos
Lipoxinas , Infarto do Miocárdio , Humanos , Prognóstico , Estudos Prospectivos , Lipoxinas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico
17.
Neural Regen Res ; 18(3): 587-593, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018182

RESUMO

Mild cognitive impairment (MCI) is a prodrome of Alzheimer's disease pathology. Cognitive impairment patients often have a delayed diagnosis because there are no early symptoms or conventional diagnostic methods. Exosomes play a vital role in cell-to-cell communications and can act as promising biomarkers in diagnosing diseases. This study was designed to identify serum exosomal candidate proteins that may play roles in diagnosing MCI. Mass spectrometry coupled with tandem mass tag approach-based non-targeted proteomics was used to show the differentially expressed proteins in exosomes between MCI patients and healthy controls, and these differential proteins were validated using immunoblot and enzyme-linked immunosorbent assays. Correlation of cognitive performance with the serum exosomal protein level was determined. Nanoparticle tracking analysis suggested that there was a higher serum exosome concentration and smaller exosome diameter in individuals with MCI compared with healthy controls. We identified 69 exosomal proteins that were differentially expressed between MCI patients and healthy controls using mass spectrometry analysis. Thirty-nine exosomal proteins were upregulated in MCI patients compared with those in control patients. Exosomal fibulin-1, with an area under the curve value of 0.81, may be a biomarker for an MCI diagnosis. The exosomal protein signature from MCI patients reflected the cell adhesion molecule category. In particular, higher exosomal fibulin-1 levels correlated with lower cognitive performance. Thus, this study revealed that exosomal fibulin-1 is a promising biomarker for diagnosing MCI.

18.
Nanoscale ; 15(3): 1357-1364, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36562326

RESUMO

Although molybdenum phosphide (MoP) has attracted increasing attention as an electrocatalyst in the hydrogen evolution reaction (HER), it is still worth exploring an effective approach to further improve the HER activities of MoP. To date, the generation and effect of P vacancies (Pv) on MoP have been rarely investigated for the HER in both alkaline and acidic media and remain unclear. Here, MoP rich in P vacancies (MoP-Pv) was prepared by hydrogen reduction to improve the HER catalytic performances. As a result, the overpotentials of MoP-Pv were 70 mV and 62 mV lower than those of pristine MoP in 1 M KOH and 0.5 M H2SO4 electrolytes, respectively. What's more, the TOFs of MoP-Pv were 3.14 s-1 and 1.19 s-1 at an overpotential of 200 mV in 1 M KOH and 0.5 M H2SO4, respectively, which are 4.1-fold and 2.5-fold higher than those of pristine MoP. Even when compared with other corresponding catalysts, the TOFs of MoP-Pv still ranked at the top. Due to the surface P vacancies, MoP-Pv possesses more electrochemically active sites and faster charge transfer capability, which all favor higher HER catalytic activities. Overall, our work validates a straightforward and vigorous strategy for improving the intrinsic HER catalytic activities of P vacancies, and also provides guidance for the development of vacancy engineering in electrocatalysts.

19.
Angew Chem Int Ed Engl ; 62(6): e202214372, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480194

RESUMO

Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3 V2 (PO4 )3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.

20.
ACS Nano ; 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459093

RESUMO

Interface engineering of zinc metal anodes is a promising remedy to relieve their inferior stability caused by dendrite growth and side reactions. Nevertheless, the low affinity and additional weight of the protective coating remain obstacles to their further implementation. Here, aroused by DFT simulation, self-assembled monolayers (SAMs) are selectively constructed to enhance the stability of zinc metal anodes in dilute aqueous electrolytes. It is found that the monolayer thiol molecules relatively prefer to selectively graft onto the unstable zinc crystal facets through strong Zn-S chemical interactions to engineer a covalent interface, enabling the uniform deposition of Zn2+ onto (002) crystal facets. Therefore, dendrite-free anodes with suppressed side reactions can be achieved, proven by in situ optical visualization and differential electrochemical mass spectrometry (DEMS). In particular, the thiol endows the symmetric cells with a 4000 h ultrastable plating/stripping at a specific current density of 1.0 mA cm-2, much superior to those of bare zinc anodes. Additionally, the full battery of modified anodes enables stable cycling of 87.2% capacity retention after 3300 cycles. By selectively capping unstable crystal facets with inert molecules, this work provides a promising design strategy at the molecular level for stable metal anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...