Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 103(2): e21632, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31621105

RESUMO

Biogenic amines (BAs), such as octopamine, tyramine, dopamine, serotonin, and acetylcholine regulate various behaviors and physiological functions in insects. Here, we identified seven genes encoding BA biosynthetic enzymes and 16 genes encoding BA G protein-coupled receptors in the genome of the endoparasitoid wasp, Pteromalus puparum. We compared the genes with their orthologs in its host Pieris rapae and the related ectoparasitic wasp Nasonia vitripennis. All the genes show high (>90%) identity to orthologs in N. vitripennis. P. puparum and N. vitripennis have the smallest number of BA receptor genes among the insect species we investigated. We then analyzed the expression profiles of the genes, finding those acting in BA biosynthesis were highly expressed in adults and larvae and those encoding BA receptors are highly expressed in adults than immatures. Octα1R and 5-HT7 genes were highly expressed in salivary glands, and a high messenger RNA level of 5-HT1A was found in venom apparatuses. We infer that BA signaling is a fundamental component of the organismal organization, homeostasis and operation in parasitoids, some of the smallest insects.


Assuntos
Aminas Biogênicas/metabolismo , Borboletas/genética , Proteínas de Insetos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Borboletas/química , Borboletas/metabolismo , Borboletas/parasitologia , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Filogenia , Pupa/genética , Pupa/metabolismo , Alinhamento de Sequência , Vespas/enzimologia , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
2.
Arch Insect Biochem Physiol ; 103(2): e21625, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31565815

RESUMO

In insects, neuropeptides constitute a group of signaling molecules that act in regulation of multiple physiological and behavioral processes by binding to their corresponding receptors. On the basis of the bioinformatic approaches, we screened the genomic and transcriptomic data of the parasitoid wasp, Pteromalus puparum, and annotated 36 neuropeptide precursor genes and 33 neuropeptide receptor genes. Compared to the number of precursor genes in Bombyx mori (Lepidoptera), Chilo suppressalis (Lepidoptera), Drosophila melanogaster (Diptera), Nilaparvata lugens (Hemiptera), Apis mellifera (Hymenoptera), and Tribolium castaneum (Coleoptera), P. puparum (Hymenoptera) has the lowest number of neuropeptide precursor genes. This lower number may relate to its parasitic life cycle. Transcriptomic data of embryos, larvae, pupae, adults, venom glands, salivary glands, ovaries, and the remaining carcass revealed stage-, sex-, and tissue-specific expression patterns of the neuropeptides, and their receptors. These data provided basic information about the identity and expression profiles of neuropeptides and their receptors that are required to functionally address their biological significance in an endoparasitoid wasp.


Assuntos
Proteínas de Insetos/genética , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Filogenia , Pupa/genética , Pupa/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Alinhamento de Sequência , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
3.
Arch Insect Biochem Physiol ; 103(2): e21634, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31587360

RESUMO

Pteromalus puparum is a gregarious pupal endoparasitoid with a wide host range. It deposits eggs into pierid and papilionid butterfly pupae. Glutathione S-transferases (GSTs) are a family of multifunctional detoxification enzymes that act in xenobiotic metabolism in insects. Insect genome projects have facilitated identification and characterization of GST family members. We identified 20 putative GSTs in the P. puparum genome, including 19 cytosolic and one microsomal. Phylogenetic analysis showed that P. puparum GSTs are clustered into Hymenoptera-specific branches. Transcriptomic data of embryos, larvae, female pupae, male pupae, female adults, male adults, venom glands, carcass, salivary glands, and ovaries revealed stage-, sex-, and tissue-specific expression patterns of GSTs in P. puparum. This is the most comprehensive study of genome-wide identification, characterization, and expression profiling of GST family in hymenopterans. Our results provide valuable information for understanding the metabolic adaptation of this wasp.


Assuntos
Glutationa Transferase/genética , Proteínas de Insetos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Filogenia , Pupa/genética , Pupa/metabolismo , Alinhamento de Sequência , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
4.
Front Physiol ; 10: 1282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680999

RESUMO

The immunological interaction between Drosophila melanogaster and its larval parasitoids has been thoroughly investigated, however, little is known about the interaction between the host and its pupal parasitoids. Pachycrepoideus vindemmiae, a pupal ectoparasitoid of D. melanogaster, injects venom into its host while laying eggs on the puparium, which regulates host immunity and interrupts host development. To resist the invasion of parasitic wasps, various immune defense strategies have been developed in their hosts as a consequence of co-evolution. In this study, we mainly focused on the host immunomodulation by P. vindemmiae and thoroughly investigated cellular and humoral immune response, including cell adherence, cell viability, hemolymph melanization and the Toll, Imd, and JAK/STAT immune pathways. Our results indicated that venom had a significant inhibitory effect on lamellocyte adherence and induced plasmatocyte cell death. Venom injection and in vitro incubation strongly inhibited hemolymph melanization. More in-depth investigation revealed that the Toll and Imd immune pathways were immediately activated upon parasitization, followed by the JAK/STAT pathway, which was activated within the first 24 h post-parasitism. These regulatory effects were further validated by qPCR. Our present study manifested that P. vindemmiae regulated the cellular and humoral immune system of host D. melanogaster in many aspects. These findings lay the groundwork for studying the immunological interaction between D. melanogaster and its pupal parasitoid.

5.
Front Physiol ; 10: 1196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611805

RESUMO

Selenoproteins serve in anti-oxidant and cellular redox functions in almost all organisms. A recent study characterized a selenoprotein F-like (SPF-L) in the brown plant hopper's (BPH), Nilaparvata lugens, male accessory glands (MAGs), raised the question of whether the SPF-L is associated with female fecundity. In this study, SPF-L mRNA was found to be enriched in the internal reproductive organ (IRO) of virgin males, also expressed relatively stably in virgin males and females, and dietary dsSPF-L-treatments led to reduced MAG protein and Arginine content. Knockdown of NlSPF-L in unmated males did not influence juvenile hormone (JH) III and ecdysteroid titers, however, dsSPF-L-treated mated males had increased JH III titer, and reduced ecdysteroid titer compared to controls. After mating with dsSPF-L-treated males, female partners had reduced fat body and ovary soluble proteins and JH III tier and vitellogenin (Vg) mRNA levels, but no alterations in ecdysteroid titer, body weight or longevity. The experimental females had prolonged pre-oviposition periods and they laid fewer eggs, which suffered reduced hatching rates and population growth index (PGI). Such mating also led to impaired IRO development in males and females, which was confirmed by immunofluorescence staining. We infer that SPF-L affects reproductive success of males and their partners.

6.
Insect Biochem Mol Biol ; 113: 103215, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31449847

RESUMO

In this study, two novel antibacterial peptide genes, termed lugensin A and B were identified and characterized from a rice sap-sucking hemipteran insect pest, the brown planthopper, Nilaparvata lugens. Lugensin gene expression was significantly induced by Gram-negative and Gram-positive bacterial stains under the regulation of a signal receptor, the long peptidoglycan recognition protein (PGRP-LC) in the IMD pathway. Knockdown of PGRP-LC by RNAi eliminated bacterium induced Lugensin gene expression. Lugensins had the apparent antibacterial activities against Escherichia coli K12, Bacillus subtilis and the rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1. Lugensins inhibited bacterial proliferation by disrupting the integrity of the bacterial membranes. Scanning electron microscopy revealed abnormal membrane morphology of the recombinant Lugensin-treated bacteria. Lugensins induced complete cell disruption of E. coli K12 and B. subtilis strains while formed the holes on the cell surface of Aaa RS-1 strain. Immunofluorescence showed that Lugensins localized in the cell membrane of E. coli K12 while accumulated in the cytosol of B. subtilis. Differently, Lugensins remained in both the cell membrane and the cytosol of Aaa RS-1 strain, suggesting different action modes of Lugensins to different microbes. This is the first report of the novel antibacterial peptides found in the rice sap-sucking hemipteran insect species.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Feminino , Hemípteros/crescimento & desenvolvimento , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Masculino , Ninfa/genética , Ninfa/metabolismo , Oócitos/metabolismo , Interferência de RNA
7.
Front Physiol ; 10: 747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293435

RESUMO

The antibiotic jinggangmycin (JGM) is broadly applied in Chinese rice producing regions to control rice blight, a fungal disease. Aside from protecting rice plants from the disease, JGM leads to the unexpected action of stimulating brown planthopper (BPH; Nilaparvata lugens; Hemiptera: Delphacidae) reproduction to the extent it can influence population sizes. The JGM-induced BPH population growth has potential for severe agricultural problems and we are working to understand and mitigate the mechanisms of the enhanced reproduction. UDP-glucuronosyltransferases (UGTs) are multifunctional detoxification enzymes responsible for biotransformation of diverse lipophilic compounds. The biological significance of this enzyme family in insect fecundity is not fully understood, however, upregulated UGT12 in JGM-treated BPH, may influence fecundity through metabolism of developmental hormones. This idea prompted our hypothesis that NlUGT12 is a positive modulator of BPH reproductive biology. JGM treatment led to significant increases in accumulations of mRNA encoding NlUGT12, numbers of eggs laid, oviposition period, juvenile hormone III titers, and fat body, and ovarian protein contents. dsUGT12 treatment suppressed NlUGT12 expression and reversed JGM-enhanced effects, resulting in under-developed ovaries and reduced expression of juvenile hormone acid methyltransferase and the JH receptor, methoprene tolerant. Application of the JH analog, methoprene, on dsUGT12 treated-females partially reversed the dsUTG12 influence on vitellogenin synthesis and on NlUGT12 expression. These results represent an important support for our hypothesis.

8.
Fish Shellfish Immunol ; 77: 22-30, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29535012

RESUMO

C-type lectins are important immune molecules that participate in crustacean defense response. The present work reports a novel C-type lectin (PcLec6) from the red swamp crayfish Procambarus clarkii. PcLec6 encodes a single-peptide protein of 385 amino acids, which include a C-type lectin domain (CTLD) and a serine-rich region. PcLec6 expression in lymph organ and gills was up-regulated after bacterial challenge by Vibrio alginolyticus or white spot syndrome virus (WSSV). Recombinant full-length PcLec6 or its CTLD proteins were used for the functional analyses. Results showed that these two proteins had the capacity to bind to carbohydrates and bacteria. Both the full-length PcLec6 and CTLD facilitated the bacterial clearance, but only full-length PcLec6 protected crayfish from WSSV infection. Furthermore, PcLec6 regulated the expression of ALF genes. These results suggest that PcLec6 is involved in the innate immune response of crayfish against both bacterial and viral pathogens.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Lectinas Tipo C/química , Alinhamento de Sequência , Vibrio alginolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-29175757

RESUMO

The bark beetle, Tomicus yunnanensis (Coleoptera: Scolytinae), is a seriously destructive pest of Yunnan pine (Pinus yunnanensis) and is distributed solely in Southwestern China. It has been a challenge to control this pest owing to its resistance to chemical pesticides, which have been used as the main control strategy of this species in recent years. Since this approach will continue until an alternative mitigation strategy is implemented, it is essential to develop novel or improved biocontrol approaches. In the current study, we aimed to identify most, if not all, of the bark beetle's chemosensory genes, and to address their respective phylogenetic relationships and expression characteristics. Digital gene expression (DGE) profiling and a comparison of the profiles at three developmental stages yielded 40,287,265 clean reads and a large number of differentially expressed genes (DEGs), with 21 up- and 20 down-regulated DEGs involved in chemoreception. Transcriptome of the three mixed stages revealed a total of 80 transcripts encoding chemosensory-related proteins comprising 45 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 20 receptor proteins [9 odorant receptors (ORs), 8 gustatory receptors (GRs) and 3 ionotropic receptors (IRs)] and 3 sensory neuron membrane proteins (SNMPs). As many as 38 full-length sequences were acquired with a combination of transcriptomic analysis and rapid amplification of cDNA ends (RACE) strategy. Phylogenetic analysis showed that T. yunnanensis OBPs were clustered into four sub-groups: 27 Minus-C OBPs, 5 antennal binding proteins (ABPIIs), 10 Classic OBPs and one Plus-C OBP; meanwhile, the ORs were grouped into four clades (1, 2, 7b and Orco). Expression profiles revealed that 66 of 80 genes were detected in the three DGE libraries, and 15 soluble olfactory proteins were antennae-predominant, possibly guiding olfactory-associated behaviors of this beetle. Taken together, our study has provided valuable data for further functional studies of this beetle and will facilitate the identification of potential molecular targets associated with chemosensory reception for use in biocontrol strategies.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/química , Receptores Odorantes/genética , Homologia de Sequência de Aminoácidos , Transcriptoma , Regulação para Cima
10.
Fish Shellfish Immunol ; 71: 329-337, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054827

RESUMO

Crustaceans express multiple whey acidic protein (WAP) domain containing proteins which are components of host immunity. In the present study, a new double WAP domain containing protein was identified from red swamp crayfish Procambarus clarkii, designated Pc-DWD. The ORF is 387 bp, encoding 128 amino acids consisting of signal peptide of 18 residues, and two tandem WAP domains of 38 and 44 residues. Multiple alignment indicates the presence of conserved motifs in both WAP domains, and phylogenetic analysis shows that Pc-DWD is a new member of the type-IV crustin family. Pc-DWD transcripts were found most abundantly in hemocytes, gills, intestine and heart, and induced by Vibrio anguillarum, Staphylococcus aureus and white spot syndrome virus challenge. RNAi knockdown of Pc-DWD expression led to increased expression of white spot syndrome virus genes and increased crayfish mortality after virus infection. Recombinant Pc-DWD exhibited strong protease inhibitory activity towards commercial subtilicin A and protease K. Pc-DWD inhibited the crude proteases from V. anguillarum and S. aureus cultures and from the crayfish tissue extracts. We infer that Pc-DWD acts in crayfish bacterial and viral immunity.


Assuntos
Astacoidea/genética , Astacoidea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas do Leite/genética , Proteínas do Leite/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Proteínas do Leite/química , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Vibrio/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
11.
Sci Rep ; 7(1): 11611, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912601

RESUMO

PHF7 exhibits male-specific expression in early germ cells, germline stem cells and spermatogonia in insects, and its expression promotes spermatogenesis in germ cells when they are present in a male soma. However, the influence of male-specific PHF7 on female reproductive biology via mating remains unclear. Thus, we investigated the potential impacts of male PHF7, existed in seminal fluid of Nilaparvata lugens (NlPHF7), on fecundity and population growth via mating. Our results revealed that suppressing male NlPHF7 expression by RNAi led to decreases in body weight, soluble accessory gland protein content, arginine content, and reproductive organ development in males, resulting in significant reduction of oviposition periods and fecundity in females, and significant decrease in body weight, fat body and ovarian protein content, yeast-like symbionts abundance, ovarian development and vitellogenin gene expression in their female mating partners. Similarly, suppression of NlPHF7 expression in males mated with the control female reduced population growth and egg hatching rate, but did not influence gender ratio. We infer that NlPHF7 play a role important in stimulating female fecundity via mating. This study provides valuable information by identifying a potentially effective target gene for managing BPH population through RNAi.


Assuntos
Fertilidade/genética , Hemípteros/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Crescimento Demográfico , Animais , Feminino , Expressão Gênica , Masculino , Especificidade de Órgãos , Reprodução/genética , Fatores Sexuais
12.
Pest Manag Sci ; 73(6): 1204-1212, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27717121

RESUMO

BACKGROUND: Carboxylesterases (CarEs) are involved in metabolic detoxification of dietary and environmental xenobiotics in insects. However, owing to the complexity of the protein family, the involvement of CarEs in insecticide metabolism in Plutella xylostella has not been fully elucidated. This study aimed to characterise two CarE genes and assess their potential roles in response to chlorpyrifos in P. xylostella. RESULTS: Synergistic tests showed that triphenyl phosphate decreased the resistance of the third-instar larvae to chlorpyrifos. The treatment of the third-instar larvae with chlorpyrifos at the LC30 dose led to a significant increase in CarE activity. Two CarE cDNAs (Pxae18 and Pxae28) were subsequently sequenced and characterised. Both genes were expressed predominantly in the larval midgut. Most importantly, two CarE genes showed significantly higher expression in the chlorpyrifos-resistant strain than in the susceptible strain. RNAi knockdown of Pxae18 and Pxae28 significantly increased the mortality to chlorpyrifos from 40% in the control to 73.8 and 63.3% respectively. CONCLUSION: RNAi knockdown of Pxae18 and Pxae28 significantly inhibited detoxification ability and increased the mortality in P. xylostella. The results indicate that these two CarE genes play important roles in the detoxification of chlorpyrifos in P. xylostella. © 2016 Society of Chemical Industry.


Assuntos
Hidrolases de Éster Carboxílico/genética , Clorpirifos/metabolismo , Inseticidas/metabolismo , Mariposas/genética , Animais , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Metabólica , Larva/genética , Larva/metabolismo , Mariposas/metabolismo , Organofosfatos/farmacologia , Interferência de RNA
13.
Sci Rep ; 6: 37430, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876748

RESUMO

The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.


Assuntos
Acetil-CoA Carboxilase/genética , Agroquímicos/efeitos adversos , Proteínas de Choque Térmico HSP70/genética , Hemípteros/genética , Proteínas de Insetos/genética , Animais , China , Mudança Climática , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Fungicidas Industriais/efeitos adversos , Aquecimento Global , Hemípteros/efeitos dos fármacos , Hemípteros/patogenicidade , Humanos , Inositol/efeitos adversos , Inositol/análogos & derivados , Proteínas de Insetos/efeitos dos fármacos , Inseticidas/efeitos adversos , Oryza/parasitologia , Ovário/efeitos dos fármacos , Ovário/patologia , Interferência de RNA , Reprodução/efeitos dos fármacos , Reprodução/genética , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade
14.
Gene ; 592(1): 1-7, 2016 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-27452121

RESUMO

The impact of Bacillus thuringiensis (Bt) toxin proteins on non-target predatory arthropods is not well understood at the cellular and molecular levels. Here, we investigated the potential effects of Cry1Ab expressing rice on fecundity of the wolf spider, Pardosa pseudoannulata, and some of the underlying molecular mechanisms. The results indicated that brown planthoppers (BPHs) reared on Cry1Ab-expressing rice accumulated the Cry toxin and that reproductive parameters (pre-oviposition period, post-oviposition stage, number of eggs, and egg hatching rate) of the spiders that consumed BPHs reared on Bt rice were not different from those that consumed BPHs reared on the non-Bt control rice. The accumulated Cry1Ab did not influence several vitellin (Vt) parameters, including stored energy and amino acid composition, during one generation. We considered the possibility that the Cry toxins exert their influence on beneficial predators via more subtle effects detectable at the molecular level in terms of gene expression. This led us to transcriptome analysis to detect differentially expressed genes in the ovaries of spiders exposed to dietary Cry1Ab and their counterpart control spiders. Eight genes, associated with vitellogenesis, vitellogenin receptor activity, and vitellin membrane formation were not differentially expressed between ovaries from the treated and control spiders, confirmed by qPCR analysis. We infer that dietary Cry1Ab expressing rice does not influence fecundity, nor expression levels of Vt-associated genes in P. pseudoannulata.


Assuntos
Proteínas de Bactérias/genética , Fertilidade/genética , Oryza/genética , Receptores de Superfície Celular/genética , Aranhas/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Proteínas de Insetos , Masculino , Oryza/parasitologia , Ovário/metabolismo , Receptores de Superfície Celular/metabolismo , Aranhas/patogenicidade , Aranhas/fisiologia , Transcriptoma , Transgenes , Vitelinas/genética , Vitelinas/metabolismo
15.
Sci Rep ; 6: 28976, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353701

RESUMO

In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.


Assuntos
Perfilação da Expressão Gênica/métodos , Lepidópteros/metabolismo , Neuropeptídeos/genética , Oryza/parasitologia , Receptores Acoplados a Proteínas-G/genética , Processamento Alternativo , Animais , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Neuropeptídeos/metabolismo , Filogenia , Receptores Acoplados a Proteínas-G/metabolismo , Análise de Sequência de RNA/métodos , Distribuição Tecidual
16.
Sci Rep ; 6: 28111, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305948

RESUMO

In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly increased fecundity (as numbers of eggs laid), relative to females mated with untreated males. Because SPATA5 acts in mammalian sperm development and is expressed in testes, we posed the hypothesis that NlSPATA5 occurs in BPH seminal fluid and it operates in fecundity via mating. We tested the hypothesis by investigating the influence of suppressing NlSPATA5 expression in BPH males on fecundity. Reduced expression of NlSPATA5 led to decreased male accessory gland protein content and reproductive system development compared to controls. These changes in males led to prolonged pre-oviposition periods and decreased fecundity in females. For both genders, we recorded no difference in the body weight, oviposition periods, and longevity compared to controls. NlSPATA5 suppression in males also led to decreased fat body and ovarian protein content, yeast-like symbionts abundance and ovarian development as well as vitellogenin gene expression in their mating partners. We infer that increased NlSPATA5 expression may be one molecular mechanism of tzp-driven reproduction and population increases in BPH.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/biossíntese , Proteínas de Artrópodes/biossíntese , Fertilidade/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Organotiofosfatos/farmacologia , Triazóis/farmacologia , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Artrópodes/genética , Feminino , Hemípteros/genética , Hemípteros/metabolismo , Masculino , Reprodução/efeitos dos fármacos , Vitelogeninas/biossíntese , Vitelogeninas/genética
17.
Sci Rep ; 6: 26967, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27254821

RESUMO

Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms.


Assuntos
Proteínas de Insetos/genética , Vespas/genética , Animais , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/imunologia , Defensinas/genética , Defensinas/metabolismo , Defensinas/farmacologia , Resistência à Doença , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Larva/microbiologia , Larva/parasitologia , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Mariposas/parasitologia , Sinais Direcionadores de Proteínas , Transcriptoma , Venenos de Vespas/genética , Venenos de Vespas/metabolismo , Vespas/citologia , Vespas/metabolismo , Vespas/microbiologia
18.
Sci Rep ; 6: 18984, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739506

RESUMO

The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH.


Assuntos
Antibacterianos/farmacologia , Hemípteros/enzimologia , Inositol/análogos & derivados , Proteínas de Insetos/fisiologia , Lipase/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Corpo Adiposo/enzimologia , Feminino , Glicerol/metabolismo , Inositol/farmacologia , Masculino , Ovário/enzimologia , Reprodução/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação para Cima
19.
Sci Rep ; 5: 15360, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482193

RESUMO

A major challenge in ecology lies in understanding the coexistence of intraguild species, well documented at the organismal level, but not at the molecular level. This study focused on the effects of the antibiotic, jinggangmycin (JGM), a fungicide widely used in Asian rice agroecosystems, on reproduction of insects within the planthopper guild, including the brown planthopper (BPH) Nilaparvata lugens and the white-backed planthopper (WBPH) Sogatella furcifera, both serious resurgence rice pests. JGM exposure significantly increased BPH fecundity and population growth, but suppressed both parameters in laboratory and field WBPH populations. We used digital gene expression and transcriptomic analyses to identify a panel of differentially expressed genes, including a set of up-regulated genes in JGM-treated BPH, which were down-regulated in JGM-treated WBPH. RNAi silencing of Acetyl Co-A carboxylase (ACC), highly expressed in JGM-treated BPH, reduced ACC expression (by > 60%) and eliminated JGM-induced fecundity increases in BPH. These findings support our hypothesis that differences in ACC expression separates intraguild species at the molecular level.


Assuntos
Acetil-CoA Carboxilase/genética , Técnicas de Silenciamento de Genes , Hemípteros/fisiologia , Inositol/análogos & derivados , Interferência de RNA , Reprodução/efeitos dos fármacos , Reprodução/genética , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Inativação Gênica , Inositol/farmacologia , Reprodutibilidade dos Testes , Transcriptoma
20.
Sci Rep ; 5: 12194, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26185058

RESUMO

The brown planthopper (BPH), Nilaparvata lugens, sugar transporter gene 6 (Nlst6) is a facilitative glucose/fructose transporter (often called a passive carrier) expressed in midgut that mediates sugar transport from the midgut lumen to hemolymph. The influence of down regulating expression of sugar transporter genes on insect growth, development, and fecundity is unknown. Nonetheless, it is reasonable to suspect that transporter-mediated uptake of dietary sugar is essential to the biology of phloem-feeding insects. Based on this reasoning, we posed the hypothesis that silencing, or reducing expression, of a BPH sugar transporter gene would be deleterious to the insects. To test our hypothesis, we examined the effects of Nlst6 knockdown on BPH biology. Reducing expression of Nlst6 led to profound effects on BPHs. It significantly prolonged the pre-oviposition period, shortened the oviposition period, decreased the number of eggs deposited and reduced body weight, compared to controls. Nlst6 knockdown also significantly decreased fat body and ovarian (particularly vitellogenin) protein content as well as vitellogenin gene expression. Experimental BPHs accumulated less fat body glucose compared to controls. We infer that Nlst6 acts in BPH growth and fecundity, and has potential as a novel target gene for control of phloem-feeding pest insects.


Assuntos
Fertilidade/genética , Inativação Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Proteínas de Transporte de Monossacarídeos/genética , Animais , Peso Corporal , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Hemípteros/crescimento & desenvolvimento , Longevidade/genética , Masculino , Ovário/anatomia & histologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA