Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 139: 103925, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838175

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen, causing gastroenteritis or severe systemic infection in a variety of hosts. During infection, S. Typhimurium must survive and replicate in host macrophages, which produce abundant oxidative compounds. SoxRS regulon is a well-known regulator that is activated in response to oxidative stress and promotes bacterial tolerance to oxidants in E. coli. However, the global regulatory function of SoxS in S. Typhimurium remains poorly characterized. Here, we used an RNA sequencing-based approach to investigate the role of SoxS in the expression of S. Typhimurium virulence genes. Besides the downregulation of genes related to resistance to oxidative stress, we found that in a soxS deletion mutant the expression of Salmonella pathogenicity island (SPI)-2 genes, which are crucial for replication within macrophages, was significantly repressed. Moreover, immunofluorescence and mice infection experiments showed that soxS deletion inhibited replication in macrophages and decreased virulence upon intraperitoneal inoculation in mice, respectively. Collectively, our findings demonstrate that SoxS is a positive regulator of SPI-2 genes and, therefore, plays a crucial role in S. Typhimurium intracellular replication and virulence.

2.
Dev Comp Immunol ; 103: 103498, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31525382

RESUMO

The phenomena of enhanced protection of innate immunity responding to a pre-exposed pathogen have been reported in invertebrates. The underpinning molecular basis and mechanism for the enhanced immune protection are still missing. In order to explore the possible molecular basis for enhanced immune protection in molluscs, the transcriptomic analysis of oysters Crassostrea gigas hemocytes after twice stimulation of Vibrio splendidus were conducted, and a total of 403 M clean reads and 34254 differentially expressed genes (DEGs) were collected. There were 2964 common DEGs up-regulated in hemocytes after both the first and second immune stimulation, which were mostly enriched in metabolic processes and immune related pathways, such as endocytosis, MAPK signaling pathway and TLR signal pathway. Moreover, 187 and 55 DEGs were higher expressed at resting (0 h after stimulation) and activating state (12 h after stimulation) of the second immune response than that of the first response, respectively, mainly including immune recognition receptor scavenger receptor 2, signal molecule MAPK2, immune regulator IL17-d, apoptosis inhibitor IAP and effector cathepsin. More importantly, 13 DEGs were long-lastingly higher expressed at both the resting and activating state within the second immune response than that of the first, including TLR signal molecule MyD88, anti-virulent tissue inhibitor of metalloproteinase, anti-bacterial proline-rich transmembrane protein, which might play indispensable roles in enhanced immune protection against V. splendidus re-infection. The expression patterns of TLR signals (CgTLR6 and CgMyD88) and effector molecules (CgTIMP and CgPRTP) were further validated by RT-PCR, which were consistent to transcriptomic results. All the results provided an overall molecular basis of enhanced immune protection for hemocytes defensing against the second stimulation of V. splendidus in oyster, which would be valuable for understanding the protection mechanisms of pre-exposure in invertebrates.

3.
Dev Comp Immunol ; 102: 103467, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425720

RESUMO

Serious juvenile oyster disease induced by pathogenic Vibrio splendidus has resulted in tremendous economic loss, but the molecular mechanisms underlying this killing mechanism remain unclear. The resistance of adult oyster to V. splendidus or its virulence factors might provide a possible access to cognize the interaction between pathogen and host. In the present study, the extracellular products (ECP) from less virulent V. splendidus JZ6 were injected into adult Pacific oyster Crassostrea gigas, and the cellular and humoral immune response induced by ECP were investigated. The phagocytosis rate of hemocytes was significantly up-regulated (30.57%) at 6 h after ECP injection compared with that (21%) of control groups. And significantly high level of ROS production was also observed from 3 h to 12 h in ECP-injected oysters, concomitant with increased apoptosis rate of hemocytes (16.4% in ECP-injected group, p < 0.01) compared with control group (6.7%). By RT-PCR analysis, the expression level of antioxidant CgSOD in hemocytes significantly increased to 6.41-fold of that in control groups (p < 0.01) at 12 h post ECP injection. The expression levels of anti-toxic metalloprotease inhibitors CgTIMP629 and CgTIMP628 were also significantly up-regulated at the early (3-6 h) and late (6-24 h) stage of immune response, respectively. Moreover, after the ECP were incubated with serum proteins isolated from the ECP-injected oysters in vitro, the metalloprotease activity of ECP significantly declined by 21.39%, and less degraded serum proteins were detected by SDS-PAGE. When the primarily cultured hemocytes were stimulated with heat-inactivated ECP or fragments derived from ECP-degraded serum proteins, the expressions of CgTIMP629 (13.64 and 7.03-fold of that in saline group, respectively, p < 0.01) and CgTIMP628 (5.07 and 6.08-fold of that in saline group, respectively, p < 0.01) in hemocytes were all significantly induced. All the results indicated that the adult oysters could launch phagocytosis, antioxidant and anti-toxic response to resist the virulence of ECP, possibly by sensing heterologous ECP and ECP-induced endogenous alarm signals. These results provided a possible clue for the resistance mechanism of adult oysters towards the ECP of less virulent V. splendidus, which might be valuable for exploring strategies for the control of oyster disease.

4.
Int Microbiol ; 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31832871

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important gram-negative intracellular pathogen that infects humans and animals. More than 50 putative regulatory proteins have been identified in the S. Typhimurium genome, but few have been clearly defined. In this study, the physiological function and regulatory role of STM14_3563, which encodes a ParD family putative transcriptional regulator in S. Typhimurium, were investigated. Macrophage replication assays and mice experiments revealed that S. Typhimurium showed reduced growth in murine macrophages and attenuated virulence in mice owing to deletion of STM14_3563 gene. RNA sequencing (RNA-Seq) data showed that STM14_3563 exerts wide-ranging effects on gene expression in S. Typhimurium. STM14_3563 activates the expression of several genes encoded in Salmonella pathogenicity island (SPI)-6, SPI-12, and SPI-13, which are required for intracellular replication of S. Typhimurium. Additionally, the global transcriptional regulator Fis was found to directly activate STM14_3563 expression by binding to the STM14_3563 promoter. These results indicate that STM14_3563 is involved in the regulation of a variety of virulence-related genes in S. Typhimurium that contribute to its growth in macrophages and virulence in mice.

5.
J Basic Microbiol ; 59(11): 1143-1153, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31577373

RESUMO

Salmonella enterica serovar Typhimurium (S. Tm) is a major intracellular pathogen that infects humans and animals, and its survival and growth in macrophages is essential for its pathogenicity. More than 50 putative regulatory proteins are encoded by the S. Tm genome, but the functions of these regulatory proteins in mediating S. Tm pathogenicity are largely unknown. In this study, we investigated the biological function of the STM0030 gene, which encodes a putative LysR-type transcriptional regulator. We found that STM0030 is upregulated 2.8-5.7-fold during S. Tm growth in macrophages. Further, mutating this gene decreased bacterial growth in macrophages and attenuated virulence in mice. RNA-sequencing to investigate the regulatory function of STM0030 in S. Tm revealed that 447 genes were differentially expressed between the mutant and the wild-type strains; 429 of these genes were downregulated, suggesting that STM0030 mainly acts as a transcriptional activator. Moreover, the expression of gluconate, maltose, and hexose-p transport genes, as well as allantoin utilization genes were downregulated in the STM0030 mutant; this might be associated with the observed decrease in intracellular replication and pathogenicity of the mutant. Our findings suggest that STM0030 is a new pathogenicity-associated regulatory protein that broadens our understanding of the virulence regulatory network of S. Tm.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Células RAW 264.7 , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética
6.
Sci Rep ; 9(1): 14930, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624300

RESUMO

Owing to the diversity of pulse-wave morphology, pulse-based diagnosis is difficult, especially pulse-wave-pattern classification (PWPC). A powerful method for PWPC is a convolutional neural network (CNN). It outperforms conventional methods in pattern classification due to extracting informative abstraction and features. For previous PWPC criteria, the relationship between pulse and disease types is not clear. In order to improve the clinical practicability, there is a need for a CNN model to find the one-to-one correspondence between pulse pattern and disease categories. In this study, five cardiovascular diseases (CVD) and complications were extracted from medical records as classification criteria to build pulse data set 1. Four physiological parameters closely related to the selected diseases were also extracted as classification criteria to build data set 2. An optimized CNN model with stronger feature extraction capability for pulse signals was proposed, which achieved PWPC with 95% accuracy in data set 1 and 89% accuracy in data set 2. It demonstrated that pulse waves are the result of multiple physiological parameters. There are limitations when using a single physiological parameter to characterise the overall pulse pattern. The proposed CNN model can achieve high accuracy of PWPC while using CVD and complication categories as classification criteria.

7.
Front Immunol ; 10: 2041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555272

RESUMO

Accumulating evidences suggest that the enhanced immune responses and increased protection against bacteria-induced mortality can be initiated after the primary exposure to various microbial communities and their components in various organisms including commercially valuable crustaceans. In the present study, the survival rate and immune responses of Chinese mitten crab Eriocheir sinensis were determined after an immune priming (IP) with formalin-killed Aeromonas hydrophila and an immune challenge (ICH) with the same but live pathogen (Ah group). A group in which the animals received a salt injection prior to challenge was maintained as control (Ns group). In the present study, it was shown that an IP with killed A. hydrophila can significantly protect the crabs against the ICH with a lethal dose of the live pathogen. The increased survival was associated with elevated rate and duration of phagocytosis. The antibacterial activity of the serum was significantly increased in Ah group compared to that in Ns group. Significant changes of phenoloxidase (PO) activities were also found between Ah and Ns group but not in Ah group between IP and ICH. No significant changes of lysozyme were found in Ah and NS group during the whole experiment except 3 h after IP. In addition, the levels of transcripts and protein of Dscam were increased in hemocytes of the crabs from Ah group. All the results suggested that a primary immune priming with a particular killed pathogen could induce an enhanced immunity in crabs when they were encountered secondly with the same live pathogen. The evidences of elevated immune protections in crabs would contribute to better understand the mechanism of immune priming in invertebrates.

8.
Front Physiol ; 10: 1034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474874

RESUMO

The biosynthesis of a calcified shell is critical for the development of oyster larvae. This process can be severely inhibited by CO2-induced ocean acidification, causing mass mortality of oyster larvae. However, the underlying molecular mechanism of such process has not been well explored until now. In the present study, a homolog of chitin synthase (named as Cgchs1) and a homolog of chitinase (named as Cgchit4) were identified from the Pacific oyster Crassostrea gigas. The cDNA sequences of Cgchs1 and Cgchit4 were of 813 bp and 2118 bp, encoding a putative polypeptide of 271 amino acids and 706 amino acids, respectively. There were a Chitin_synth_2 domain and a Glyco_18 domain in the inferred amino acid sequences of Cgchs1 and Cgchit4, respectively. Both Cgchs1 and Cgchit4 shared high sequence identity with their homologs in vertebrates. In addition, when oyster larvae were exposed to acidification treatment (pH 7.4), their shell biosynthesis process was seriously restrained. The expression level of Cgchs1 mRNA was significantly suppressed while that of Cgchit4 was dramatically activated upon acidification treatment. Cgchs1 and Cgchit4 are critical enzymes for chitin metabolism, and such changes in their mRNA expression could result in the decrease of chitin content in oyster larvae's shells, which might lead to the failure of shell formation. Therefore, results in the present study suggested that acidified seawater might inhibit the formation of oyster calcified shell by suppressing the biosynthesis of chitin.

9.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487966

RESUMO

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associated with virulence are highly expressed during the intracellular lifecycle. yaeB, which encodes an RNA methyltransferase, is also upregulated during S. Typhimurium growth in macrophages. However, the involvement of YaeB in S. Typhimurium pathogenicity is still unclear. In this study, we investigated the role of YaeB in S. Typhimurium virulence. Deletion of yaeB significantly impaired S. Typhimurium growth in macrophages and virulence in mice. The effect of yaeB on pathogenicity was related to its activation of pstSCAB, a phosphate (Pi)-specific transport system that is verified here to be important for bacterial replication and virulence. Moreover, qRT-PCR data showed YaeB was induced by the acidic pH inside macrophages, and the acidic pH passed to YeaB through inhibiting global regulator histone-like nucleoid structuring (H-NS) which confirmed in this study can repress the expression of yaeB. Overall, these findings identified a new virulence regulatory network involving yaeB and provided valuable insights to the mechanisms through which acidic pH and low Pi regulate virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/patogenicidade , tRNA Metiltransferases/metabolismo , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Replicação do DNA , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Virulência/genética , tRNA Metiltransferases/genética
10.
Future Microbiol ; 14: 1109-1122, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31370702

RESUMO

Aim: Determination of the virulence regulatory network controlled by the ATP-dependent Lon protease in Salmonella enterica serovar Typhimurium. Materials & methods: The effect of Lon on S. Typhimurium virulence genes expression was investigated by RNA sequencing, and virulence-associated phenotypes between the wild-type and lon mutant were compared. Results: SPI-1, SPI-4, SPI-9 and flagellar genes were activated, while SPI-2 genes were repressed in the lon mutant. Accordingly, the lon mutant exhibited increased adhesion to and invasion of epithelial cells, increased motility and decreased replication in macrophages. The activation of SPI-2 genes by Lon partially accounts for the replication defect of the mutant. Conclusion: A wide range of virulence regulatory functions are governed by Lon in S. enterica ser. Typhimurium.


Assuntos
Trifosfato de Adenosina/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Protease La/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fatores de Virulência/biossíntese , Animais , Aderência Bacteriana , Células CACO-2 , Endocitose , Células Epiteliais/microbiologia , Humanos , Camundongos , Protease La/deficiência , Células RAW 264.7 , Análise de Sequência de RNA , Virulência
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(4): 649-656, 2019 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-31441267

RESUMO

Based on the noninvasive detection indeices and fuzzy mathematics method, this paper studied the noninvasive, convenient and economical cardiovascular health assessment system. The health evaluation index of cardiovascular function was built based on the internationally recognized risk factors of cardiovascular disease and the noninvasive detection index. The weight of 12 indexes was completed by the analytic hierarchy process, and the consistency test was passed. The membership function, evaluation matrix and evaluation model were built by fuzzy mathematics. The introducted methods enhanced the scientificity of the evaluation system. Through the Kappa consistency test, McNemer statistical results ( P = 0.995 > 0.05) and Kappa values (Kappa = 0.616, P < 0.001) suggest that the comprehensive evaluation results of model in this paper are relatively consistent with the clinical, which is of certain scientific significance for the early detection of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular , Lógica Fuzzy , Modelos Cardiovasculares , Humanos , Pesquisa
12.
Fish Shellfish Immunol ; 92: 772-781, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279080

RESUMO

C-type lectins (CTLs), as important pattern recognition receptors (PRRs), are a superfamily of Ca2+-dependent carbohydrate-recognition proteins which participate in nonself-recognition and eliminating pathogens. In the present study, a novel CTL (designated as CgCLec-3) was identified from the Pacific oyster Crassostrea gigas. There was only one carbohydrate-recognition domain (CRD) of 151 amino acid residues within the deduced amino acid sequence of CgCLec-3. The deduced amino acid sequence of CgCLec-3 CRD shared low homology with the CRDs of other CTLs in oyster with the identities ranging from 12% to 22%. A novel DIN motif was found in Ca2+-binding site 2 of CgCLec-3. The relative expression level of CgCLec-3 in hemocytes was up-regulated significantly after the stimulations of bacteria and Pathogen Associated Molecular Patterns (PAMPs). Immunohistochemistry assay showed that CgCLec-3 protein was mainly distributed in gill and mantle, less in gonad, and could not be detected in adductor muscle and hepatopancreas. The recombinant protein (rCgCLec-3) could bind lipopolysaccharide (LPS), mannose (MAN) and peptidoglycan (PGN), but not poly (I:C). rCgCLec-3 exihibited strong binding ability to Vibrio anguillarum and V. splendidus, moderate binding activities to Escherichia coli, Pichia pastoris and Yarrowia lipolytica, weak binding affinity to Staphylococcus aureus and Micrococcus luteus. rCgCLec-3 could agglutinate microorganisms, in a Ca2+-dependent manner and its activity to agglutinate V. splendidus was remarkably higher than that to agglutinate E. coli, S. aureus and P. pastoris. The phagocytic activity of oyster hemocytes was significantly enhanced after incubation with rCgCLec-3. rCgCLec-3 also exhibited antibacterial activity against E. coli and S. aureus. The results clearly suggested that CgCLec-3 in Pacific oyster C. gigas not only served as a PRR involved in the PAMPs recognition and microbes binding, but also functioned as an immune effector participating in the clearance of invaders.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Sequência de Aminoácidos , Animais , Fungos/fisiologia , Perfilação da Expressão Gênica , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Lectinas Tipo C/química , Alinhamento de Sequência
13.
Artigo em Inglês | MEDLINE | ID: mdl-31181632

RESUMO

Research on bacterial abundance in water column and sediment of dammed rivers remain poorly understood, despite their importance to biogeochemical processes, benthic ecology, and bioremediation. The present study investigates the water and sediment bacteria by epifluorescence microscopy in the reservoir (above the dam site), as well as in the downstream river stretches (below-dam site) at the middle reach of Lancang River during the wet, the normal and the dry seasons. The results demonstrated that the reservoir operating regime (water discharge variations) and strong precipitation promoted significant differences in the conditions of the river below the dam, especially for the concentration of dissolved oxygen, redox potential, electric conductivity, turbidity, and total dissolved solids in water and concentration of microbial activity in sediment. The seasonal variations were also key factors influencing water quality at the below-dam sampling sites. Nutrients concentration did not induce a significant response in bacterial abundance when inorganic nutrients were sufficient. Bacterial density in sediment was regulated by hydropower-related discharge, particle size, and type of sediments, while bacterial abundances in water were strongly linked with the physicochemical characteristics of the water, such as total dissolved solids and conductivity.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Centrais Elétricas , Microbiologia da Água , China , Monitoramento Ambiental , Rios/microbiologia , Estações do Ano , Água , Poluentes Químicos da Água/análise , Qualidade da Água
14.
Fish Shellfish Immunol ; 89: 228-236, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30936046

RESUMO

The Runx family is a kind of heteromeric transcription factors, which is defined by the presence of a runt domain. As transcriptional regulator during development and cell fate specification, Runx is best known for its critical roles in hematopoiesis. In the present study, a Runx transcription factor (designed as CgRunx) was identified and characterized from the oyster Crassostrea gigas. The complete coding sequence of CgRunx was of 1638 bp encoding a predicted polypeptide of 545 amino acids with one conserved runt domain, which shared high similarity with other reported Runx proteins. CgRunx was highly expressed in hemocytes, gill and mantle both at the protein and nucleic acid levels. CgRunx protein was localized specifically in the cell nuclei of hemocytes, and distributed at the tubule lumen of gill filament. During the larval developmental stages, the mRNA transcripts of CgRunx gradually increased after fertilization, reached to a relative high level at the 8 cell embryos and the blastula stage of 2-4 hpf (hours post fertilization) (about 40-fold), and peaked at early trochophore larvae (10 hpf) (about 60-fold). Whole-mount immunofluorescence assay further revealed that the abundant immunofluorescence signals of CgRunx distributed through the whole embryo at blastula stage (5 hpf), and progressively reduced with the development to a ring structure around the dorsal region in trochophore larvae (10 hpf). Scattered positive immunoreactivity signals finally appeared in the velum region of D-veliger larvae. After LPS and Vibrio splendidus stimulations, the expression levels of CgRunx mRNA in hemocytes were up-regulated significantly compared with that in the control (0 h), which were 2.98- and 2.46-fold (p < 0.05), 2.67- and 1.5-fold (p < 0.05), 2.36- and 1.38-fold (p < 0.05) at 3 h, 6 h and 12 h, respectively. These results collectively suggested that CgRunx involved in immune response and might participate in larvae hematopoiesis in oyster.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Subunidades alfa de Fatores de Ligação ao Core/química , Perfilação da Expressão Gênica , Alinhamento de Sequência
15.
Onco Targets Ther ; 12: 1905-1915, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881042

RESUMO

Background: Cholangiocarcinoma (CCA) is the second most common fatal primary hepatobiliary malignant carcinoma, characterized by early invasion and extremely poor outcomes. It is therefore necessary to identify a novel biomarker to better diagnose CAA and predict its prognosis. Recently, emerging evidence has revealed that some lncRNAs play an important role in the tumorigenesis and progression of CAA. In order to support this search for novel diagnostic and prognostic biomarkers for CAA, we conducted a meta-analysis to analyze the published association between lncRNA expression and its clinical value in CAA. Methods: Eligible studies were pooled and analyzed according to our inclusion and exclusion criteria after a comprehensive literature search. Stata 14.0 software was used to analyze the data from relevant studies and to construct a forest plot. Different effect sizes were selected for the meta-analysis. Results: In total, 24 publications were included in this meta-analysis. After review of their full-text, 16 articles studied the association between lncRNAs and clinicopathological characteristics, 2 discussing diagnosis and 16 discussing prognosis. Our results showed that overexpression of CCAT1 was significantly correlated with tumor stage (I + II vs III + IV) (OR, 4.99; 95% CI 2.77-8.99; P<0.001) and lymph node metastasis in CCA (OR, 4.75; 95% CI 2.65-8.52; P<0.001). Furthermore, elevated CCAT lncRNA family expression predicted a shorter overall survival (HR, 2.09; 95% CI 1.17-3.00; P<0.001), especially CCAT2. Upregulation of CCAT2 was also obviously associated with tumor stage in CCA (OR, 5.29; 95% CI 2.64-10.58; P=0.001). Conclusion: This is the first meta-analysis to assess the relationship between expression of lncRNAs and the clinical values of patients with CCA. lncRNAs can function as potential molecular biomarkers of the clinicopathology and prognosis of CCA.

16.
Fish Shellfish Immunol ; 87: 96-104, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633961

RESUMO

Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ±â€¯4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ±â€¯1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.


Assuntos
Crassostrea/imunologia , Granulócitos/imunologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Crassostrea/citologia , Crassostrea/enzimologia , Citometria de Fluxo/métodos , Granulócitos/citologia , Granulócitos/enzimologia , Hemócitos/citologia , Separação Imunomagnética/métodos , Proteínas/genética , Vibrio/imunologia
17.
Fish Shellfish Immunol ; 84: 587-598, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30336283

RESUMO

The mitochondrial pathway of apoptosis is well studied as the major mechanism of physiological cell death in vertebrates. In the present study, a second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis-binding protein (IAP) with low pI protein (DIABLO) (designated as CgSmac) was identified from oyster Crassostrea gigas. The open reading frame of CgSmac was of 966 bp nucleotides encoding a predicted polypeptide of 321 amino acids with a conserved Smac/DIABLO domain containing a potential IAP-binding motif of VMPV. CgSmac proteins were distributed in hemocytes and co-localized with mitochondria. Western blotting analysis revealed that CgSmac proteins mainly existed in the dimer form in hemocytes, and the monomeric precursors and mature monomers were also detected. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSmac in hemocytes was significantly up-regulated and peaked at 6 h (12.26-fold, p < 0.05), and the protein level of its dimers was significantly up-regulated at 6 h, 12 h, 24 h, and 48 h, while that of CgSmac monomers was up-regulated at 6 h, 12 h and down-regulated at 24 h, 48 h. The decrease of mitochondrial membrane potential indicated that the occurrence of early stage of apoptosis in primary cultured hemocytes was induced by LPS, and RNA interference (RNAi) of CgSmac could not rescue this decrease. The caspase-3 activity in primary cultured hemocytes was significantly suppressed after RNAi of CgSmac. Correspondingly, the total apoptotic rate of primary cultured hemocytes was also significantly suppressed in dsCgSmac + LPS group (31.57%) compared to dsEGFP + LPS group (40.27%, p < 0.05), which in turn demonstrated the conserved pro-apoptotic function of CgSmac. Furthermore, the early apoptotic rate (10.4% vs. 8.5%, p < 0.05) was significantly higher in dsCgSmac + LPS group than that of dsEGFP + LPS group, while the necrosis (7.7% vs. 10.0%, p < 0.05) and late apoptotic rates (13.4% vs. 21.9%, p < 0.05) were lower in dsCgSmac + LPS group than those of dsEGFP + LPS group. Collectively, CgSmac could activate mitochondrial apoptosis pathway by promoting caspase-3 activity in oyster hemocytes against exogenous LPS invasion. These results provided new insights on oyster apoptosis and the immune defense mechanisms in invertebrates.


Assuntos
Apoptose/efeitos dos fármacos , Crassostrea/genética , Crassostrea/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Mitocôndrias/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Sequência de Bases , Peptídeos e Proteínas de Sinalização Intracelular/química , Lipopolissacarídeos/farmacologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Alinhamento de Sequência
18.
Dev Comp Immunol ; 91: 132-142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389518

RESUMO

As an important post-translational protein modification, ubiquitination has been demonstrated to play a vital role in immune response of vertebrates. Ubiquitin (Ub)-conjugating enzyme E2 is the "heart" of ubiquitination, which is responsible for Ub cellular signaling and substrate modification. In the present study, an Ub-conjugating enzyme E2 (designed as CgUbe2g1) was identified from oyster Crassostrea gigas, and its regulation in the immune response against lipopolysaccharide (LPS) stimulation was investigated. CgUbe2g1 encoded a polypeptide of 168 amino acids with the predicted molecular mass of 19.20 kDa and contained conserved catalytic 'Ubc' domains. It shared a higher similarity with the known UBC2G1 type E2s and was closely clustered with the type E2s identified from invertebrates in the phylogenetic assay. The mRNA transcripts of CgUbe2g1 were mainly distributed in hemocyte, mantle, hepatopancreas and male gonad of C. gigas. CgUbe2g1 protein was found to be colocalized with Ub around the nucleus of oyster hemocyte. The recombinant CgUbe2g1 protein (rCgUbe2g1) could activate the ubiquitination in vitro by binding both activated and un-activated Ub. The expressions of inflammation-related factors TNF-α and NF-κB in CgUbe2g1 transfected cells were both significantly up-regulated after LPS stimulation, which were 12.9-fold at 3 h (p < 0.01) and 2.3-fold at 6 h (p < 0.01) of that in negative control group, respectively. The phagocytic rate of hemocyte and the ROS level in hemocyte were both significantly decreased (p < 0.01), while the apoptosis rate was significantly increased (p < 0.01) after CgUbe2g1 mRNA was interfered. These results demonstrated that Ub-conjugating enzyme CgUbe2g1 was involved in the innate immune response of oyster against invading pathogen, which might play important roles in the activation of inflammatory response and regulation of cellular immune response.


Assuntos
Crassostrea/imunologia , Hemócitos/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Animais , Apoptose , Células Cultivadas , Clonagem Molecular , Humanos , Imunidade Inata , NF-kappa B/metabolismo , Filogenia , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
19.
Dev Comp Immunol ; 86: 96-108, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29738808

RESUMO

Immunoglobulin superfamily (IgSF), an extensive collection of proteins possessing at least one immunoglobulin-like (Ig-like) domain, performs a wide range of functions in recognition, binding or adhesion process of cells. In the present study, a cysteine-rich motif associated immunoglobulin domain containing protein (designated CgCAICP-1) was identified in Pacific oyster Crassostrea gigas. The deduced protein sequence of CgCAICP-1 contained 534 amino acidresidues, with three Ig domains which were designated as IG1, IG2 and IG3, and a cysteine-rich motif between the first and second Ig domain. The mRNA transcripts of CgCAICP-1 were highly expressed in hemocytes and up-regulated significantly (p < 0.05) after the stimulation of lipopolysaccharides (LPS), but not peptidoglycan (PGN). The recombinant CgCAICP-1 protein (rCgCAICP-1) exhibited binding activity to various pathogen-associated molecular patterns (PAMPs) including LPS, PGN, mannose (Man) and D-galactose (D-Gal), and microorganisms including Vibrio splendidus, Escherichia coli, Staphylococcus aureus, Micrococcus luteus and Pichia pastoris. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. splendidus and Gram-positive bacteria M. luteus were significantly enhanced (p < 0.05) after pre-incubation of microbes with rCgCAICP-1. Furthermore, the transcripts of CgCAICP-1 exhibited high level of polymorphism among individuals. The ratio of nonsynonymous and synonymous distances (dN/dS) for AA'BCC'D strands of IG1 (the possible binding sites 1, pbs1) across all allelic variants was 2.09 (p < 0.05), while the ratio for the non-pbs regions was less than 1.0. The 1248 bp fragment amplified from the 5' end of CgCAICP-1 open reading frame (ORF) from 24 transcript variants could be divided artificially into seven regions of 50 elements, and all of the allelic variants might be derived from these elements by point mutation and recombination processes. These results collectively suggested that CgCAICP-1 might function as an important pattern recognition receptor (PRR) to recognize various PAMPs and facilitated the phagocytosis of oyster hemocytes towards both Gram-positive and Gram-negative bacteria. Diverse isoforms of CgCAICP-1 were generated through point mutation and recombination processes and maintained by balancing selection, which would provide a broader spectrum of interaction surface and be associated with immune resistance of oysters to infectious pathogens.


Assuntos
Crassostrea/imunologia , Imunoglobulinas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Animais , Bactérias/imunologia , Sequência de Bases , Crassostrea/genética , Crassostrea/microbiologia , Hemócitos/imunologia , Hemócitos/microbiologia , Imunoglobulinas/genética , Padrões Moleculares Associados a Patógenos/imunologia , Padrões Moleculares Associados a Patógenos/metabolismo , Fagocitose/genética , Fagocitose/imunologia , RNA Mensageiro/genética , Receptores de Reconhecimento de Padrão/genética , Alinhamento de Sequência
20.
Int J Mol Sci ; 19(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510476

RESUMO

Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs-PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.


Assuntos
Imunidade Inata , Moluscos/imunologia , Polissacarídeos Bacterianos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA