Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336802

RESUMO

Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil-plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.

2.
Sci Rep ; 12(1): 19916, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402801

RESUMO

Photo-mediated Ultrasound Therapy (PUT), as a new anti-vascular technique, can promote cavitation activity to selectively destruct blood vessels with a significantly lower amount of energy when compared to energy level required by other laser and ultrasound treatment therapies individually. Here, we report the development of a high speed PUT system based on a 50-kHz pulsed laser to achieve faster treatment, decreasing the treatment time by a factor of 20. Furthermore, we integrated it with optical coherence tomography angiography (OCTA) for real time monitoring. The feasibility of the proposed OCTA-guided PUT was validated through in vivo rabbit experiments. The addition of OCTA to PUT allows for quantitative prescreening and real time monitoring of treatment response, thereby enabling implementation of individualized treatment strategies.


Assuntos
Tomografia de Coerência Óptica , Terapia por Ultrassom , Animais , Coelhos , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Terapia por Ultrassom/métodos , Lasers
3.
J Agric Food Chem ; 70(46): 14732-14743, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351282

RESUMO

The sugar moieties of natural flavonoids determine their absorption, bioavailability, and bioactivity in humans. To explore structure-dependent bioactivities of quercetin, isoquercetin, and rutin, which have the same basic skeleton linking different sugar moieties, we systemically investigated the ameliorative effects of dietary these flavonoids on high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) of mice. Our results revealed that isoquercetin exhibits the strongest capability in improving NAFLD phenotypes of mice, including body and liver weight gain, glucose intolerance, and systemic inflammation in comparison with quercetin and rutin. At the molecular level, dietary isoquercetin markedly ameliorated liver dysfunction and host metabolic disorders in mice with NAFLD. At the microbial level, the three flavonoids compounds, especially isoquercetin, can effectively regulate the gut microbiota composition, such as genera Akkermansia, Bifidobacterium, and Lactobacillus, which were significantly disrupted in NAFLD mice. These comparative findings offer new insights into the structure-dependent activities of natural flavonoids for NAFLD treatment.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quercetina/farmacologia , Glicosídeos/farmacologia , Camundongos Endogâmicos C57BL , Rutina , Flavonoides/farmacologia , Açúcares
4.
J Agric Food Chem ; 70(47): 14831-14840, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383360

RESUMO

Hesperetin-7-O-glucoside (Hes-7-G) is a typical flavonoid monoglucoside, which can be generated from hesperidin with the removal of rhamnose by hydrolysis. Untargeted and targeted metabolomics together with 16S rRNA gene sequencing were employed to explore the exact absorption site of Hes-7-G and its beneficial effect in mice. Intestinal 1H nuclear magnetic resonance (NMR)-based metabolomics screening showed that Hes-7-G is mainly metabolized in the small intestine of mice, especially the ileum segment. Quantification analysis of bile acids (BAs) in the liver, intestinal tract, feces, and serum of mice suggests that Hes-7-G intake accelerates the processes of biosynthesis and excretion of BAs, thus promoting digestion and lowing hepatic cholesterol and triglyceride. 16S rRNA gene sequencing reveals that Hes-7-G significantly elevates the diversity of the gut microbiota in mice, especially those bacteria associated with BA secondary metabolism. These results demonstrated that long-term dietary Hes-7-G plays beneficial roles in health by modulating the gut bacteria and BA metabolism in mice.


Assuntos
Microbioma Gastrointestinal , Hesperidina , Camundongos , Animais , Microbioma Gastrointestinal/genética , Hesperidina/metabolismo , RNA Ribossômico 16S/genética , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Bactérias/genética , Bactérias/metabolismo , Glucosídeos/metabolismo , Camundongos Endogâmicos C57BL
5.
Nat Commun ; 13(1): 6137, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253346

RESUMO

Accurate organ-at-risk (OAR) segmentation is critical to reduce radiotherapy complications. Consensus guidelines recommend delineating over 40 OARs in the head-and-neck (H&N). However, prohibitive labor costs cause most institutions to delineate a substantially smaller subset of OARs, neglecting the dose distributions of other OARs. Here, we present an automated and highly effective stratified OAR segmentation (SOARS) system using deep learning that precisely delineates a comprehensive set of 42 H&N OARs. We train SOARS using 176 patients from an internal institution and independently evaluate it on 1327 external patients across six different institutions. It consistently outperforms other state-of-the-art methods by at least 3-5% in Dice score for each institutional evaluation (up to 36% relative distance error reduction). Crucially, multi-user studies demonstrate that 98% of SOARS predictions need only minor or no revisions to achieve clinical acceptance (reducing workloads by 90%). Moreover, segmentation and dosimetric accuracy are within or smaller than the inter-user variation.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pescoço , Radiometria
6.
Artigo em Inglês | MEDLINE | ID: mdl-36078535

RESUMO

To a certain degree, the resilience of the transportation system expresses the safety of the transportation system, because it reflects the ability of the system to maintain its function in the face of disturbance events. In the current research, the assessment of the resilience of urban mobility is attractive and challenging. Apart from this, the concept of green mobility has been popular in recent years. As a representative way of shared mobility, the implementation of ridesharing will affect the level of urban mobility resilience to a certain extent. In this paper, we use a data low-intensity method to evaluate the urban traffic resilience under the circumstance of restricted car use. In addition, we incorporate the impact of ridesharing services. The research in this paper can be regarded as an evaluation framework, which can help policy makers and relevant operators to grasp the overall resilience characteristics of cities in emergencies, identify weak sectors, and formulate the best response plan. This method has been successfully applied to two cities in China, demonstrating its potential for practice. Finally, we also explored the relationship between urban traffic resilience and the pattern of population distribution. The analysis shows that population density has an impact on the level of transportation resilience. And the incorporation of ridesharing will bring an obvious increment in resilience of most areas.


Assuntos
Meios de Transporte , China , Cidades , Densidade Demográfica
7.
Opt Lett ; 47(18): 4712-4715, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107070

RESUMO

We propose a simple two-step amplifier configuration algorithm based on signal power across different channels to improve the generalized signal-to-noise ratio (GSNR) performance of dynamic C + L-band links in the presence of amplifier spontaneous emission (ASE) noise, Kerr nonlinearity, and stimulated Raman scattering (SRS) using erbium-doped fiber amplifiers (EDFA). In step 1, ASE noise and Kerr nonlinearity are taken into account to derive sub-optimal signal power profiles at the beginning of each span using the local optimization global optimization (LOGO) strategy. The effect of SRS is compensated through amplifier gain pre-tilt in step 2. Simulations for links with homogeneous/heterogeneous spans, static full-channel loading, and dynamic loading due to gradual channel additions for C + L-band upgrades show that the proposed algorithm can achieve similar GSNR performance, but requires much less execution time, compared to other iterative methods that target for improving the GSNR across the C + L band, thus making it a fast and efficient GSNR management strategy for future dynamic C + L-band networks.

8.
PLoS One ; 17(9): e0274004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36108081

RESUMO

In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables suitable for runoff prediction through correlation analysis, and uses TV-DMA and deep learning algorithm to construct an integrated prediction model for runoff. The results demonstrate that the current monthly runoff, the runoff of the previous month, the current monthly temperature, the temperature of the previous month and the current monthly rainfall were the variables suitable for runoff prediction. The results of runoff prediction show that the TV-DMA model has the highest prediction accuracy (with 0.97 Nash-efficiency coefficient (NSE)) and low uncertainty. The interval band of uncertainty was 33.3%-65.5% lower than single model. And the prediction performance of the single model and TV-DMA model in flood season is obviously lower than that in non-flood season. In addition, this study indicate that the current monthly runoff, rainfall and temperature are the important factor affecting the runoff prediction, which should be paid special attention in the runoff prediction.


Assuntos
Aprendizado Profundo , Movimentos da Água , Inundações , Previsões , Chuva
9.
Biomed Pharmacother ; 153: 113387, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834991

RESUMO

BACKGROUND: Although therapeutic antibodies against immune checkpoints such as PD-1/PD-L1 have achieved unprecedented success in clinical tumor patients, there are still many patients who are ineffective or have limited responses to immune checkpoint blockade (ICB). Discovery of novel strategies for cancer immunotherapy including natural small molecules is needed. METHODS: Owing to its extremely low content in Epimedium genus, we firstly constructed a microbial cell factory to enzymatically biosynthesize icariside I, a natural flavonoid monosaccharide from Herbal Epimedium. Using a combination of targeted MS-based metabolomics, flow cytometric analysis, and biological assays, the therapeutic potentials of icariside I were subsequently investigated in vivo and in vitro. RESULTS: We find that icariside I markedly downregulates a series of intermediate metabolites such as kynurenine, kynurenic acid and xanthurenic acid and corresponding key enzymes involved in kynurenine-AhR pathway in both tumor cells and tumor-bearing mice. In vivo, oral administration of icariside I downregulates SLC7A8 and PAT4 transporters and AhR, thus inhibiting nuclear PD-1 in CTLs. Moreover, icariside I significantly upregulates CD8 + T cells in both peripheral blood and tumor tissues of tumor-bearing mice. Consequently, interferon-γ (IFN-γ) secreted by CD8 + T cells suppresses tumor growth through activation of JAK1-STAT1 signaling, thus inducing tumor cell apoptosis. CONCLUSIONS: These results suggest that icariside I could be an effective small molecule drug for tumor immunotherapy by blocking kynurenine-AhR pathway and tumor immune escape.


Assuntos
Cinurenina , Neoplasias , Animais , Linhagem Celular Tumoral , Flavonas , Imunoterapia , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , Evasão Tumoral , Microambiente Tumoral , Umbeliferonas
10.
Anal Chem ; 94(28): 10263-10270, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35726775

RESUMO

Immunofluorescence imaging of cells plays a vital role in biomedical research and clinical diagnosis. However, when it is applied to relative quantification of proteins, it suffers from insufficient fluorescence intensity or partial overexposure, resulting in inaccurate relative quantification. Herein, we report a computer-aided design of DNA self-limited assembly (CAD-SLA) technology and apply it for relative quantification of membrane proteins, a concept proposed for the first time. CAD-SLA can achieve exponential cascade signal amplification in one pot and terminate at any desired level. By conjugating CAD-SLA with immunofluorescence, in situ imaging of cell membrane proteins is achieved with a controllable amplification level. Besides, comprehensive fluorescence intensity information from fluorescent images can be obtained, accurately showing relative quantitative information. Slight protein expression differences previously indistinguishable by immunofluorescence or Western blotting can now be discriminated, making fluorescence imaging-based relative quantification a promising tool for membrane protein analysis. From the perspectives of both DNA self-assembly technology and immunofluorescence technology, this work has solved difficult problems and provided important reference for future development.


Assuntos
Desenho Assistido por Computador , Proteínas de Membrana , DNA , Imagem Óptica
11.
Sci Total Environ ; 838(Pt 4): 156570, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690209

RESUMO

Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether, TCS) and triclocarban (3,4,4'-trichloro-carbanilide, TCC) are two antimicrobial agents commonly used for personal care products. Previous studies primarily focused on respective harmful effects of TCS and TCC. In terms of their structural similarities and differences, however, the structure-toxicity relationships on health effects of TCS and TCC exposure remain unclear. Herein, global 1H NMR-based metabolomics was employed to screen the changes of metabolic profiling in various biological matrices including liver, serum, urine, feces and intestine of mice exposed to TCS and TCC at chronic and acute dosages. Metagenomics was also applied to analyze the gut microbiota modulation by TCS and TCC exposure. Targeted MS-based metabolites quantification, histopathological examination and biological assays were subsequently conducted to supply confirmatory information on respective toxicity of TCS and TCC. We found that oral administration of TCS mainly induced significant liver injuries accompanied with inflammation and dysfunction, hepatic steatosis fatty acids and bile acids metabolism disorders; while TCC exposure caused marked intestine injuries leading to striking disruption of colonic morphology, inflammatory status and intestinal barrier integrity, intestinal bile acids metabolism and microbial community. These comparative results provide novel insights into structure-dependent mechanisms of TCS-induced hepatotoxicity and TCC-triggered enterotoxicity in mice.


Assuntos
Carbanilidas , Doença Hepática Induzida por Substâncias e Drogas , Triclosan , Animais , Ácidos e Sais Biliares , Carbanilidas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Camundongos , Triclosan/toxicidade
12.
Comput Intell Neurosci ; 2022: 5180307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498208

RESUMO

This study aims to solve the problem that the traditional online foreign language teaching system focuses on function development, ignoring system security, and has certain risks. An online foreign language education system is designed and developed based on the blockchain technology. First, the blockchain technology and key technologies of system design are described in detail. Second, the overall technical architecture of the system, functional modules, and business logic of each module are designed. Finally, the basic performance of the system is tested. The results show that the system can realize the user's unrestricted office work and zero maintenance of the system. The separation of presentation logic and business logic facilitates the development and maintenance of the system. The system mainly includes six functional modules: user management, course management, course order, course study, course certificate, and credit authentication. These modules are guaranteed for daily teaching use. The event processing success rate of the six functional modules of the system is greater than 99%, and the processing success rate is relatively high. The central processing unit (CPU) usage and memory usage are both below 30%. The host throughput of the six major modules is greater than 100 times/s when processing services. The average response time on the terminal side is maintained below 0.5 s. The average response time of business-side processing is maintained below 0.4 s, which is in line with the standard. The event processing success rate of the constructed system is 10.75% higher than that of other systems, and the average response time, CPU usage, and memory usage are 53.38%, 51.49%, and 50% lower than other systems, respectively. Therefore, the proposed system has better performance. To sum up, the designed system has excellent throughput, event processing capability, response speed, and low CPU and memory occupancy when processing business and is suitable for promotion and use in foreign language online education in colleges and universities. The use of the proposed system can improve its overall teaching efficiency and quality. The purpose is to provide important technical support for the improvement of the security of the online foreign language teaching system.


Assuntos
Blockchain , Educação à Distância , Educação à Distância/métodos , Idioma , Tecnologia , Universidades
13.
Nanoscale ; 14(17): 6612-6619, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421879

RESUMO

Endogenous and exogenous tumor-related microRNAs (miRNAs) are considered promising tumor biomarkers and tumor therapeutic agents. In this work, we propose a miRNA self-responsive drug delivery system (miR-SR DDS), which enables the association between endogenous and exogenous miRNAs, so as to achieve a smart responsive and synergistic drug delivery. The miR-SR DDS consists of DNA-miRNA hybrids of let-7a and the complementary DNA of miR-155, which was packaged in exosomes. In response to the overexpressed miR-155 in breast cancer cells, the hybrids disintegrate and release let-7a and the complementary DNA of miR-155 to inhibit the expression of HMGA1 and relieve the inhibition of SOX1, respectively. Under the dual-targeted gene regulation, results show that the growth, migration and invasion of breast cancer cells can be synergistically inhibited through the Wnt/ß-catenin signaling pathway. The concept and successful practice of the miR-SR DDS can be used as a reference for the development of miRNA drugs.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA Complementar/metabolismo , Exossomos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Anal Chem ; 94(6): 2827-2834, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104119

RESUMO

Controllable regulation of enzyme activity is an important prerequisite for the in-depth application of enzymes, especially in today's intelligent era. However, irreversible regulation and cumbersome operation make this goal difficult to achieve. Here, by adopting magnetism and a harmless, noncontact, and time- and space-controllable physical element, we developed a system that could conveniently and reversibly regulate the activity of DNAzyme. In this system, the strands of the DNAzyme could be stretched or folded by applying or removing a magnetic field. Thereby, the conformation-dependent endonuclease activity of the DNAzyme could be facilely switched between an "OFF" and "ON" state. This system provides a reusable platform for the control of enzyme catalytic activity through magnetism, which provides guidance for further application in some related scientific research, especially the regulation of the activity of conformation-dependent polymers (DNAzymes, aptamers, and peptides).


Assuntos
DNA Catalítico
15.
Sens Actuators B Chem ; 358: 131460, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35095201

RESUMO

COVID-19 is a highly diffuse respiratory infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Currently, quantitative real-time polymerase chain reaction (qRT-PCR) technology is commonly used in clinical diagnosis of COVID-19. However, this method is time-consuming and labor-intensive, which is limited in clinical application. Here, we propose a new method for the ultrasensitive and visual detection of SARS-CoV-2 viral nucleic acid. The assay integrates with a paper device and highly efficient isothermal amplification technology - Netlike rolling circle amplification (NRCA), which can reach a limit of detection of 4.12 aM. The paper-based NRCA owns advantages of specificity, portability, visualization and low-cost. Therefore, this method can effectively meet the requirements of point-of-care testing, providing a novel molecular detection technology for clinical diagnosis of COVID-19 and promoting the development of NRCA devices.

16.
Sci Adv ; 8(2): eabk0133, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030012

RESUMO

In situ spatial proteomics analysis of a single cell has not been achieved yet, mainly because of insufficient throughput and sensitivity of current techniques. Recent progress on immuno-nucleic acid amplification technology presents tremendous opportunities to address this issue. Here, we report an innovative hybridization chain reaction (HCR) technique that involves computer-aided design (CAD) and reversible assembly. CAD enables highly multiplexed HCR with a sequence database that can work in parallel, while reversible assembly enables the switching of HCR between a working state and a resting state. Thus, CAD-HCR has been successfully adopted for single-cell spatial proteomics analysis. The fluorescence signal of CAD-HCR is comparable with conventional immunofluorescence, and it is positively correlated with the abundance of target proteins, which is beneficial for the visualization of proteins. The method developed here expands the toolbox of single-cell analysis and proteomics studies, as well as the performance and application of HCR.

18.
Comput Math Methods Med ; 2021: 7690902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812270

RESUMO

The intelligent diagnosis of cervical cancer by using a class of data mining algorithms has important practical significance. In particular, the useful information included in a significant quantity of medical data may not only discreetly boost the development of medical technology but also detect cervical cancer in the future. This paper improves the data mining algorithm and combines image recognition technology and data mining technology to extract and analyze image features. Moreover, this paper makes full use of the information contained in the image to realize the segmentation of the cervical cancer cell image, select the feature vector according to the characteristics of the cervical cancer cell, and use the statistical classification method to design the classifier. The test results show that the automatic recognition effect of this system is good, and it has a good auxiliary diagnosis effect. Therefore, it can be verified in clinical practice in the follow-up.


Assuntos
Algoritmos , Mineração de Dados/estatística & dados numéricos , Diagnóstico por Computador/estatística & dados numéricos , Neoplasias do Colo do Útero/diagnóstico , Biologia Computacional , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Modelos Logísticos , Neoplasias do Colo do Útero/diagnóstico por imagem
19.
J Agric Food Chem ; 69(43): 12753-12762, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693717

RESUMO

Hesperetin-7-O-glucoside (Hes-7-G) is a naturally occurring flavonoid monoglucoside in Citri Reticulatae Pericarpium and exhibits relatively high biological activities. To explore the anti-inflammatory capacity of dietary Hes-7-G, lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sodium sulfate (DSS)-induced colitis mice were used here as in vitro and in vivo inflammation models. The results showed that Hes-7-G (5 µM) significantly restored cellular metabolic disorders and inflammation in LPS-stimulated RAW264.7 macrophages. In the in vivo study, dietary Hes-7-G (1 mg/kg body weight) markedly alleviated the inflammatory status in DSS-induced colitis mice, manifested by the recovered colon length from 5.91 ± 0.66 to 6.45 ± 0.17 cm, histopathological changes, and mRNA levels of colonic inflammatory factors including Tnf-α and Il-22. Furthermore, dietary Hes-7-G not only profoundly regulated the gut microbiota composition including phyla Bacteroidetes, Cyanobacteria, Desulfobacterota, and Deferribacteres and genus Enterorhabdus, Prevotellaceae, Gastranaerophilales, Enterococcus, Intestinimonas, Ruminococcaceae, and Eubacterium in the cecal contents but also especially adjusted the co-metabolites such as short chain fatty acids and indole metabolites (indole-3-propionic, indole acetic acid), which were markedly altered by DSS treatment in mice. These findings demonstrated that Hes-7-G has strong anti-inflammatory activity in vitro and in vivo and potential preventive or therapeutic effects for chronic inflammation diseases.


Assuntos
Colite , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Glucosídeos/uso terapêutico , Hesperidina , Camundongos , Camundongos Endogâmicos C57BL
20.
Nanoscale Horiz ; 6(12): 979-986, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34542134

RESUMO

Treating cancer with high efficacy while eliminating side effects has been the holy grail of cancer research. The challenge, however, arises from the similarity in molecular traits of cancer cells and normal cells because truly specific cancer biomarkers are extremely scarce if not entirely unavailable. Often, biomarkers serving as the therapeutic targets are present on both healthy cells and cancers, but at different levels, causing not only off-target side effects but also on-target side effects. This work has reported a new concept of cancer treatment, spatial confinement of cells to inhibit cell migration and invasion, which directly addresses the defining trait of cancer on the cellular level, unchecked division. Using large sized graphene oxide (LS-GO), cell surfaces can be patched. Unlike conventional chemotherapy, this spatial confinement does not affect the viability of non-dividing cells but significantly inhibits tumor cell migration and invasion in vitro and in vivo. This new concept has the potential to become a general therapeutic for many cancer types with reduced side effects.


Assuntos
Grafite , Neoplasias , Linhagem Celular Tumoral , Movimento Celular , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...