Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
J Control Release ; 334: 1-10, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33845056

RESUMO

Zwitterionic polymer nanoparticles of diverse morphologies (spherical, cylindrical, and platelet-like) constructed from biocompatible sugar-based polymers are designed to extend the pharmacological activities of short- and long-acting insulin peptides, thereby providing potential for therapeutic systems capable of reducing the frequency of administration and improving patient compliance. Amphiphilic block copolymers composed of zwitterionic poly(d-glucose carbonate) and semicrystalline polylactide segments were synthesized, and the respective block length ratios were tuned to allow formation of nanoscopic assemblies having different morphologies. Insulin-loaded nanoparticles had similar sizes and morphologies to the unloaded nanoparticle counterparts. Laser scanning confocal microscopy imaging of three-dimensional spheroids of vascular smooth muscle cells and fibroblasts after treatment with LIVE/DEAD® stain and FITC-insulin-loaded nanoparticles demonstrated high biocompatibility for the nanoconstructs of the various morphologies and significant intracellular uptake of insulin in both cell lines, respectively. Binding of short-acting insulin and long-acting insulin glargine to nanoparticles resulted in extended hypoglycemic activities in rat models of diabetes. Following subcutaneous injection in diabetic rats, insulin- and insulin glargine-loaded nanoparticles of diverse morphologies had demonstrated up to 2.6-fold and 1.7-fold increase in pharmacological availability, in comparison to free insulin and insulin glargine, respectively. All together, the negligible cytotoxicity, immunotoxicity, and minimal cytokine adsorption onto nanoparticles (as have been demonstrated in our previous studies) provide exciting and promising evidence of biocompatible nanoconstructs that are poised for further development toward the management of diabetes.

2.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920363

RESUMO

As one of the common abiotic stresses, chilling stress has negative effects on rice growth and development. Minimization of these adverse effects through various ways is vital for the productivity of rice. Nanoparticles (NPs) serve as one of the effective alleviation methods against abiotic stresses. In our research, zinc oxide (ZnO) NPs were utilized as foliar sprays on rice leaves to explore the mechanism underlying the effect of NPs against the negative impact of chilling stress on rice seedlings. We revealed that foliar application of ZnO NPs significantly alleviated chilling stress in hydroponically grown rice seedlings, including improved plant height, root length, and dry biomass. Besides, ZnO NPs also restored chlorophyll accumulation and significantly ameliorated chilling-induced oxidative stress with reduced levels of H2O2, MDA, proline, and increased activities of major antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). We further found that foliar application of ZnO NPs induced the chilling-induced gene expression of the antioxidative system (OsCu/ZnSOD1, OsCu/ZnSOD2, OsCu/ZnSOD3, OsPRX11, OsPRX65, OsPRX89, OsCATA, and OsCATB) and chilling response transcription factors (OsbZIP52, OsMYB4, OsMYB30, OsNAC5, OsWRKY76, and OsWRKY94) in leaves of chilling-treated seedlings. Taken together, our results suggest that foliar application of ZnO NPs could alleviate chilling stress in rice via the mediation of the antioxidative system and chilling response transcription factors.

3.
Mol Biol Rep ; 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871783

RESUMO

Chemosensory receptors in the dendritic membrane of olfactory cells are critical for the molecular recognition and discrimination of odorants. Tropidothorax elegans is a major pest of agricultural, ornamental, and medicinal plants. However, very little is known about olfactory genes in T. elegans. The purpose of this study was to obtain chemosensory receptor genes by sequencing the antennal transcriptome of T. elegans using Illumina sequencing technology. We identified 153 candidate chemosensory receptors, including 121 olfactory receptors (including one olfactory receptor co-receptor), 10 ionotropic receptors (including one IR8a and one IR25a), and 22 gustatory receptors (GRs). TeleOR76, 104 and 112 displayed more highly expression level than TeleOrco. Other TeleGR genes were expressed at very low levels except TeleGR1 and 20. TeleIR76b was the most highly expressed among TeleIR genes. Our results provide valuable biological information for studies of the olfactory communication system of T. elegans.

4.
Math Biosci Eng ; 18(3): 2991-3005, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33892580

RESUMO

In this paper, the finite-time stability and control of a kind of singular bio-economic systems with stochastic fluctuations are investigated. When economic profit is no longer a constant but a variable, the system shows distinct dynamic behavior. First, a singular system is proposed to describe the bio-economic system with stochastic fluctuation. Then a singular stochastic T-S fuzzy model is established based on T-S fuzzy system theory. Second, a sufficient condition is proposed to satisfy finite-time stochastic stability of bio-economic system. On this basis, a fuzzy state feedback controller is designed which can make corresponding closed-loop singular stochastic bio-economic system admissible in finite-time, and the states of the system can be driven to a bounded range through the management of the open resource. Finally, the validity of the results is verified through the numerical simulation.

5.
J Nanosci Nanotechnol ; 21(9): 4846-4851, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691876

RESUMO

Birnessite-MnO2 nanoflakes were synthesized via an aqueous oxidation method at 90 °C using Mn(CH3COO)2, NaOH, and KMnO4. The samples' morphology, crystalline structure, and optical property were determined by field emission scanning electron microscopy, X-ray powder diffraction and UV-Vis spectrophotometry. The birnessite-MnO2 nanoflakes were converted to KxMn8O16 and Mn suboxides following a decrease in the concentration of KMnO4 in the reaction. The amount of NaOH in the reaction determined the type of precursor. Without NaOH, the precursor was converted from Mn(OH)2 to Mn2+ (from Mn(CH3COO)2), thereby enabling the synthesis of birnessite-MnO2 nanoflowers. The formation mechanism of birnessite-MnO2 nanoflowers and nanoflakes was clarified via the corresponding simulated crystal structures. Evaluation of the synthesized samples confirmed that the birnessite-MnO2 nanoflakes and nanoflowers exhibited excellent degradation properties.

6.
Zhongguo Zhong Yao Za Zhi ; 46(1): 130-138, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645062

RESUMO

As a precious traditional Chinese medicine(TCM), snake bile has been widely used in numerous Chinese medicine prescriptions. Bile acid(BA) derivatives have been demonstrated as the primary chemical family in snake bile. In-depth chemical characterization of BAs is of great importance towards the establishment of quality standards and clarification of the effective material basis for snake bile. This study firstly employed ~1H-NMR to preliminarily analyze the chemical profiles of snake bile, an automated fraction collector was subsequently implemented to obtain the fractions-of-interest. The fraction was then concentrated and re-analyzed by LC-MS. Based on ~1H-NMR, BAs were found to be the main components of snake bile, and six BAs including CDCA, CA, TCDCA, TCA, TDCA and GCA were tentatively identified from the representative spectrum with the assistance of literature and reference compounds. Whereas the content of TCA in snake bile was too great, resulting in a great obstacle for the detection of trace components, the automated fraction collector was subsequently implemented to obtain the fractions-of-interest for LC-MS analysis. According to matching MS/MS information and retention time with reference compounds as well as database retrieval, a total of 57 BAs were detected and annotated. Because of the combination of ~1H-NMR and LC-MS platforms, the findings are beneficial for the in-depth characterization of BAs in snake bile, which provides references for the establishment of quality control and evaluation methods of snake bile.


Assuntos
Ácidos e Sais Biliares , Espectrometria de Massas em Tandem , Animais , Bile , Cromatografia Líquida , Serpentes
7.
J Genet Psychol ; 182(3): 129-148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704026

RESUMO

This cross-cultural study compared the prosocial behaviors of 101 Dutch, 37 urban Indian and 91 urban Chinese preschoolers, investigated (potential) cultural differences on their mothers' values and goals, and examined how mothers' values and goals relate to preschoolers' prosocial behaviors. Preschoolers' prosocial behaviors were observed in three standardized, behavioral assessments. Mothers reported on their own values and socialization goals for their children. Results showed no cultural difference in prosocial behaviors. However, Indian and Chinese mothers rated self-enhancement values as more important than Dutch mothers, and Indian mothers rated self-transcendence values and relational goals as more important than the Chinese and Dutch mothers. No difference was found on autonomous goals. These findings suggest that current cultural differences on parental socialization processes are beyond the individualistic-collectivistic dichotomy often used to classify cultures and are more reflective of the independence of these two dimensions. Mothers in urban Indian and urban Chinese societies can be categorized into an autonomous-relatedness cultural model. Additionally, there might be an ongoing shift toward an independence model in the urban, Chinese societies. Furthermore, culture moderated the association between autonomous goals and observed prosocial behaviors, with this association being significant within the Dutch sample only. No other associations between values or goals and children's prosocial behavior were found. Overall, these findings support the ecocultural model of children's prosocial development, and further suggest that young preschoolers from different cultures are more alike than different in prosocial behaviors.

8.
Med Image Anal ; 69: 101975, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550007

RESUMO

The outbreak of COVID-19 around the world has caused great pressure to the health care system, and many efforts have been devoted to artificial intelligence (AI)-based analysis of CT and chest X-ray images to help alleviate the shortage of radiologists and improve the diagnosis efficiency. However, only a few works focus on AI-based lung ultrasound (LUS) analysis in spite of its significant role in COVID-19. In this work, we aim to propose a novel method for severity assessment of COVID-19 patients from LUS and clinical information. Great challenges exist regarding the heterogeneous data, multi-modality information, and highly nonlinear mapping. To overcome these challenges, we first propose a dual-level supervised multiple instance learning module (DSA-MIL) to effectively combine the zone-level representations into patient-level representations. Then a novel modality alignment contrastive learning module (MA-CLR) is presented to combine representations of the two modalities, LUS and clinical information, by matching the two spaces while keeping the discriminative features. To train the nonlinear mapping, a staged representation transfer (SRT) strategy is introduced to maximumly leverage the semantic and discriminative information from the training data. We trained the model with LUS data of 233 patients, and validated it with 80 patients. Our method can effectively combine the two modalities and achieve accuracy of 75.0% for 4-level patient severity assessment, and 87.5% for the binary severe/non-severe identification. Besides, our method also provides interpretation of the severity assessment by grading each of the lung zone (with accuracy of 85.28%) and identifying the pathological patterns of each lung zone. Our method has a great potential in real clinical practice for COVID-19 patients, especially for pregnant women and children, in aspects of progress monitoring, prognosis stratification, and patient management.


Assuntos
/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Ultrassonografia , Adulto Jovem
9.
J Food Biochem ; 45(4): e13541, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33570789

RESUMO

The current study employed high-fat diet (HFD) induced murine model to assess the relationship between the lipid-lowering effect of aged citrus peel (chenpi) extract and the alterations of gut microbiota. The results showed that intake of chenpi extract for 12 week dose-dependently suppressed HFD-induced body weight, food intake, Lee's index, together with decreased the level of fasting blood glucose, total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Moreover, chenpi extract administration up-regulated the abundance and diversity of fecal microbiota and down-regulated the ratio of Firmicutes-to-Bacteroidetes, which was characterized by the lower family of Lachnospiraceae, Helicobacteraceae, and Desulfovibrionaceae, and higher family of Bacteroidales_S24-7, Bacteroidaceae, Rikenellaceae, and Ruminococcaceae. Consistently, at the genus levels, chenpi extract treatment reversed the expansions of Helicobacter, Lachnospiraceae_UCG-006, and Desulfovibrio, while increased the abundance of Bacteroides, Rikenellaceae_RC9_gut_group, and Alistipes (belonging to Rikenellaceae family), Anaerotruncus and Odoribacter (belonging to Ruminococcaceae family), which were significantly negatively correlated with the levels of the serum lipid parameters. In conclusion, our findings indicated that anti-obesity ability of chenpi extract might be related to the improvement of gut microbiota imbalance. PRACTICAL APPLICATIONS: With the improvement of living standards, the incidence of metabolic diseases such as obesity, hypertension, and diabetes has increased significantly, and it has become a public health problem that seriously affects the health of the people. Chenpi contains a large amount of active ingredients, flavonoids, and other compounds, which can promote the absorption of the digestive system and have good effects on diseases such as the cardiovascular system. Our previous study has confirmed that the chenpi extract effectively regulated the glucose and lipid metabolism disorder induced by high-fat diet. However, it is not clear whether the effect is closely related to the improvement of gut microbiota. Accordingly, our result would provide a theoretical basis for future research on the relationship between obesity, chenpi extract, and gut microbiota, and support additional understanding of its potential anti-obesity effects.

10.
Cell ; 184(5): 1362-1376.e18, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545087

RESUMO

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.

11.
BMC Plant Biol ; 21(1): 76, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546593

RESUMO

BACKGROUND: The subfamily Bambusoideae belongs to the grass family Poaceae and has significant roles in culture, economy, and ecology. However, the phylogenetic relationships based on large-scale chloroplast genomes (CpGenomes) were elusive. Moreover, most of the chloroplast DNA sequencing methods cannot meet the requirements of large-scale CpGenome sequencing, which greatly limits and impedes the in-depth research of plant genetics and evolution. RESULTS: To develop a set of bamboo probes, we used 99 high-quality CpGenomes with 6 bamboo CpGenomes as representative species for the probe design, and assembled 15 M unique sequences as the final pan-chloroplast genome. A total of 180,519 probes for chloroplast DNA fragments were designed and synthesized by a novel hybridization-based targeted enrichment approach. Another 468 CpGenomes were selected as test data to verify the quality of the newly synthesized probes and the efficiency of the probes for chloroplast capture. We then successfully applied the probes to synthesize, enrich, and assemble 358 non-redundant CpGenomes of woody bamboo in China. Evaluation analysis showed the probes may be applicable to chloroplasts in Magnoliales, Pinales, Poales et al. Moreover, we reconstructed a phylogenetic tree of 412 bamboos (358 in-house and 54 published), supporting a non-monophyletic lineage of the genus Phyllostachys. Additionally, we shared our data by uploading a dataset of bamboo CpGenome into CNGB ( https://db.cngb.org/search/project/CNP0000502/ ) to enrich resources and promote the development of bamboo phylogenetics. CONCLUSIONS: The development of the CpGenome enrichment pipeline and its performance on bamboos recommended an inexpensive, high-throughput, time-saving and efficient CpGenome sequencing strategy, which can be applied to facilitate the phylogenetics analysis of most green plants.

12.
Cell Death Differ ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469229

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and cause of death from cancer in China. Previous studies showed that autophagy and apoptosis inhibition are critical for the survival of ESCC cells. However, the underlying mechanisms remain to be clarified. Recently, we found that PIWIL2, a novel cancer testis protein, is highly expressed in ESCC and associated with high T-stage and poor 5-year survival rate in patients. Our further study showed that PIWIL2 can directly bind to IKK and promote its phosphorylation, leading to phosphorylation of IκB and subsequently nuclear translocation of NF-κB for apoptosis inhibition. Meanwhile, PIWIL2 competitively inhibits binding of IKK to TSC1, and thus deactivate mTORC1 pathway which suppresses ULK1 phosphorylation and initiation of autophagy. The mouse xenograft model suggested that PIWIL2 can promote ESCC growth in an IKK-dependent manner. This present work firstly revealed that PIWIL2 can play a role in regulating autophagy and apoptosis, and is associated with poor prognosis in ESCC patients, providing novel insights into the roles of PIWIL2 in tumorigenesis.

13.
BMC Musculoskelet Disord ; 22(1): 54, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422037

RESUMO

BACKGROUND: PIA has been proven to be a predictor for postoperative dysphagia in patients who undergo occipitospinal fusion. However, its predictive effect for postoperative dysphagia in patients who undergo OCF is unknown. The aim of this study was to evaluate the predictive ability of the pharyngeal inlet angle (PIA) for the occurrence of postoperative dysphagia in patients who undergo occipitocervical fusion (OCF). METHODS: Between 2010 and 2018, 98 patients who had undergone OCF were enrolled and reviewed. Patients were divided into two groups according to the presence of postoperative dysphagia. Radiographic parameters, including the atlas-dens interval (ADI), O-C2 angle (O-C2a), occipital and external acoustic meatus to axis angle (O-EAa), C2 tilting angle (C2Ta), C2-7 angle (C2-7a), PIA and narrowest oropharyngeal airway space (nPAS), were measured and compared. Simple linear regression and multiple regression analysis were used to evaluate the radiographic predictors for dysphagia. In addition, we used PIA = 90° as a threshold to analyze its effect on predicting dysphagia. RESULTS: Of the 98 patients, 26 exhibited postoperative dysphagia. Preoperatively, PIA in the dysphagia group was significantly higher than that in the nondysphagia group. We detected that O-C2a, O-EAa, PIA and nPAS all decreased sharply in the dysphagia group but increased slightly in the nondysphagia group. The changes were all significant. Through regression analyses, we found that PIA had a similar predictive effect as O-EAa for postoperative dysphagia and changes in nPAS. Additionally, patients with an increasing PIA exhibited no dysphagia, and the sensitivity of PIA <90° in predicting dysphagia reached 88.5%. CONCLUSIONS: PIA could be used as a predictor for postoperative dysphagia in patients undergoing OCF. Adjusting a PIA level higher than the preoperative PIA level could avoid dysphagia. For those who inevitably had decreasing PIA, preserving intraoperative PIA over 90° would help avert postoperative dysphagia. TRIAL REGISTRATION: This trial has been registered in the Medical Ethics Committee of West China Hospital, Sichuan University. The registration number is 762 and the date of registration is Sep. 9 th, 2019.

14.
J Nanosci Nanotechnol ; 21(2): 1196-1201, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183462

RESUMO

Nanometer zinc particles were synthesized by orthogonal test with manganese chloride, iron chloride and zinc sulfate as raw materials and NaOH as coprecipitating agent. The optimum synthesis conditions of coprecipitation method were obtained and the samples were characterized by various means. In this experiment, the SV, EF, FS, lvaws, lvawd, lvpws and lvpwd of left ventricle in mice with myocardial infarction were decreased, while the LVEDd, lveds and lvevs were increased in the environment exposed to ultrafine zinc nanoparticles, which proved that exposure to ultrafine zinc nanoparticles could lead to the enlargement of left ventricle, the thinning of ventricular wall, and the decrease of cardiac systolic and diastolic function. Further study on the heart tissue sections showed that the normal left ventricular myocardium of mice exposed to ultrafine zinc nanoparticles decreased, apoptotic cells increased, collagen content increased significantly, and myocardial fibrosis intensified. At the same time, WGA staining results of myocardial cell membrane showed that inhalation of ultra-fine nano zinc particles increased the size of myocardial infarction cells and disordered cell arrangement, which further proved that inhalation of ultra-fine nano zinc particles accelerated left ventricular pathological remodeling. The results of this study prove that the ultra-fine zinc nanoparticles in the air play an important role in the structural remodeling of myocardial infarction heart, and provide a theoretical basis for formulating targeted policies to control air pollution.

15.
Zhen Ci Yan Jiu ; 45(11): 895-901, 2020 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-33269833

RESUMO

OBJECTIVE: To observe the effect of perpendicular and subcutaneous transverse needling at "Sanyinjiao" (SP6) on visceral pain behavior, arginine vasopressin (AVP) content in the serum, uterine tissues, spinal cord and hypothalamus and expression of AVP receptors AVPR1A and AVPR1B in the uterine tissues, spinal cord and hypothalamus in cold-stasis (stasis due to pathogenic cold) type dysmenorrhea rats, so as to explore their mechanisms underlying pain relief. METHODS: Forty female SD rats were randomly divided into blank control, model, perpendicular needling and transverse needling groups, with 10 rats in each group. The cold-stasis dysmenorrhea rat model was established by exposure in a freezer (-25 ℃) for 4 h, once daily for 5 days, and subcutaneous injection of estradiol benzoate (once daily for 10 days) and intra-abdominal injection of oxytocin injection (once). For rats of the two acupuncture groups, acupuncture needles were inserted into the bilateral SP6 perpendicularly or transversely to a depth of about 4-5 mm, and retained for 20 min. The abdominal pain behavior was assessed by recording the writhing latency and scaling the rats' writhing reactions after modeling. The contents of AVP in the serum, uterus, spinal cord and hypothalamus tissues were assayed using ELISA and the expression of AVPR1A and AVPR1B in the uterus, spinal cord and hypothalamus was measured by using Western blot and quantitative real time-PCR, respectively. RESULTS: After mode-ling and compared with the blank control group, the writhing latency was significantly shortened (P<0.05), and the writhing score in the first 20 min was significantly increased (P<0.01) in the model group. After the intervention, the writhing latency was significantly prolonged (P<0.01), and the writhing scores in 20 min were significantly decreased (P<0.01) in the two needling groups. The AVP contents were obviously increased in the serum and uterine tissue (P<0.05, P<0.01) but decreased appa-rently in the spinal cord and hypothalamus tissues (P<0.01, P<0.05), and the expression levels of AVPR1A or AVPR1B protein and mRNA were markedly increased in the uterine tissues (P<0.01, P<0.05), and significantly decreased in the spinal cord and hypotha-lamus in the model group relevant to the control group (P<0.05, P<0.01). Following the intervention, The AVP content in the serum of the perpendicular needling group (P<0.05) and that in the uterus of the two needling groups were significantly decreased (P<0.01), as well as that in the hypothalamus was obviously increased in the two needling groups (P<0.05). The expression levels of AVPR1A protein and mRNA in the uterus were significantly down-regulated in the two needling groups (P<0.01, P<0.05) and AVPR1B protein in the hypothalamus of the perpendicular needling group was up-regulated (P<0.05). Moreover, no significant differences were found between the two needling groups in regulating the related indexes mentioned above (P>0.05). CONCLUSION: Both perpendicular and subcutaneous transverse needling at SP6 have an immediate analgesic effect in cold-stasis type dysmenorrhea rats, which may be related to their effects in regulating AVP levels and its receptor expression in the uterine and hypothalamus.

16.
Front Neurol ; 11: 566825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281703

RESUMO

Background: Increased blood pressure variability (BPV) might be a detrimental factor after acute ischemic stroke. Previous studies on the association between blood pressure variability in the acute ischemic stroke and functional outcome have yielded inconsistent results. We aimed to investigate the impact of day-by-day blood pressure variability within 7 days of onset on functional outcome at 3 months after acute ischemic stroke. Methods: Total 367 patients hospitalized for ischemic stroke within 48 h of onset were enrolled. The acute stage of ischemic stroke was defined as the time period from symptom onset to 7 days. During this period, blood pressure was measured twice daily (respectively, in the morning during 8:00 a.m.-10:00 a.m., in the afternoon between 15:00 p.m. and 17:00 p.m.). Day-by-day blood pressure variability, including standard deviation (SD) and coefficient variation (CV) were derived and compared to functional outcome. We dichotomized function outcome according to mRS score and unfavorable outcome was defined as mRS ≥3. Results: The patients with unfavorable outcome had significantly higher systolic BPV (within 7 days of onset) than those with favorable outcome (15.41 ± 4.59 vs. 13.42 ± 3.95 mmHg for SD, P < 0.001; 11.54 ± 3.23 vs. 10.41 ± 2.82 for CV, P = 0.001). Multivariable logistic regression analysis revealed that systolic BPV was significantly and independently associated with the 3-month functional outcome [odds ratio (OR) = 1.15, 95% confidence interval (CI): 1.07-1.22, P < 0.001 for SD; OR = 1.15, 95% CI: 1.06-1.26, P = 0.001 for CV]. In addition, After adjustment for multiple confounding factors, including age, gender, risk factors, stroke features, baseline severity, recanalized therapy, hemorrhagic transformation, pulmonary infection, white blood cell, estimated Glomerular Filtration Rate and mean BP, day-by-day BP variability was significantly correlated with an unfavorable outcome in the top vs. bottom quartile of systolic BPV (OR = 3.33, 95% CI: 1.41-7.85, P = 0.006 for SD; OR = 2.27, 95% CI: 1.04-4.94, P = 0.037 for CV) during 3-month follow-up. Similar trends were also observed for diastolic BPV. More importantly, incorporating SD of systolic BP into the conventional prediction model could significantly increase the AUC for prediction of 3-month unfavorable outcome after acute ischemic stroke (0.84 vs. 0.86; P = 0.0416). Conclusions: Increased day-by-day blood pressure variability of systolic or diastolic BP in the acute ischemic stroke was associated with higher risk for unfavorable outcome at 3 months independent of blood pressure levels. Combining SD of systolic BP with conventional risk factors could improve the prediction of unfavorable outcome.

17.
Gigascience ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319911

RESUMO

BACKGROUND: The scaly-foot snail (Chrysomallon squamiferum) is highly adapted to deep-sea hydrothermal vents and has drawn much interest since its discovery. However, the limited information on its genome has impeded further related research and understanding of its adaptation to deep-sea hydrothermal vents. FINDINGS: Here, we report the whole-genome sequencing and assembly of the scaly-foot snail and another snail (Gigantopelta aegis), which inhabits similar environments. Using Oxford Nanopore Technology, 10X Genomics, and Hi-C technologies, we obtained a chromosome-level genome of C. squamiferum with an N50 size of 20.71 Mb. By constructing a phylogenetic tree, we found that these 2 deep-sea snails evolved independently of other snails. Their divergence from each other occurred ∼66.3 million years ago. Comparative genomic analysis showed that different snails have diverse genome sizes and repeat contents. Deep-sea snails have more DNA transposons and long terminal repeats but fewer long interspersed nuclear elements than other snails. Gene family analysis revealed that deep-sea snails experienced stronger selective pressures than freshwater snails, and gene families related to the nervous system, immune system, metabolism, DNA stability, antioxidation, and biomineralization were significantly expanded in scaly-foot snails. We also found 251 H-2 Class II histocompatibility antigen, A-U α chain-like (H2-Aal) genes, which exist uniquely in the Gigantopelta aegis genome. This finding is important for investigating the evolution of major histocompatibility complex (MHC) genes. CONCLUSION: Our study provides new insights into deep-sea snail genomes and valuable resources for further studies.

18.
J Am Chem Soc ; 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33382260

RESUMO

Sulfide-based solid-state electrolytes (SSEs) matched with alloy anodes are considered as promising candidates for application in all-solid-state batteries (ASSBs) to overcome the bottlenecks of the lithium (Li) anode. However, an understanding of the dynamic electrochemical processes on alloy anode in SSE is still elusive. Herein, in situ atomic force microscopy gives insights into the block-formation and stack-accumulation behaviors of Li precipitation on an Li electrode, uncovering the morphological evolution of nanoscale Li deposition/dissolution in ASSBs. Furthermore, two-dimensional Li-indium (In) alloy lamellae and the homogeneous solid electrolyte interphase (SEI) shell on the In electrode reveal the precipitation mechanism microscopically regulated by the alloy anode. The flexible and wrinkle-structure SEI shell further enables the electrode protection and inner Li accommodation upon cycles, elucidating the functional influences of SEI shell on the cycling behaviors. Such on-site tracking of the morphological evolution and dynamic mechanism provide an in-depth understanding and thus benefit the optimizations of alloy-based ASSBs.

19.
J Am Chem Soc ; 142(49): 20752-20762, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249846

RESUMO

Intensive understanding of the surface mechanism of cathode materials, such as structural evolution and chemical and mechanical stability upon charging/discharging, is crucial to design advanced solid-state lithium batteries (SSLBs) of tomorrow. Here, via in situ atomic force microscopy monitoring, we explore the dynamic evolution process at the surface of LiNi0.5Co0.2Mn0.3O2 cathode particles inside a working SSLB. The dynamic formation process of the cathode interphase layer, with an inorganic-organic hybrid structure, was real-time imaged, as well as the evolution of its mechanical property by in situ scanning of the Derjaguin-Muller-Toporov modulus. Moreover, different components of the cathode interphase layer, such as LiF, Li2CO3, and specific organic species, were identified in detailat different stages of cycling, which can be directly correlated with the impedance buildup of the battery. In addition, the transition metal migration and the formation of new phases can further exacerbate the degradation of the SSLB. A relatively stable cathode interphase is key to improving the performance of SSLBs. Our findings provide deep insights into the dynamic evolution of surface morphology, chemical components and mechanical properties of the cathode interphase layer, which are pivotal for the performance optimization of SSLBs.

20.
iScience ; 23(11): 101754, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33251490

RESUMO

Chondrichthyan (cartilaginous fish) occupies a key phylogenetic position and is important for investigating evolutionary processes of vertebrates. However, limited whole genomes impede our in-depth knowledge of important issues such as chromosome evolution and immunity. Here, we report the chromosome-level genome of white-spotted bamboo shark. Combing it with other shark genomes, we reconstructed 16 ancestral chromosomes of bamboo shark and illustrate a dynamic chromosome rearrangement process. We found that genes on 13 fast-evolving chromosomes can be enriched in immune-related pathways. And two chromosomes contain important genes that can be used to develop single-chain antibodies, which were shown to have high affinity to human disease markers by using enzyme-linked immunosorbent assay. We also found three bone formation-related genes were lost due to chromosome rearrangements. Our study highlights the importance of chromosome rearrangements, providing resources for understanding of cartilaginous fish diversification and potential application of single-chain antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...