Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Sci Rep ; 9(1): 15055, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636290

RESUMO

DNA methylation-based biological age (DNAm age), as well as genome-wide average DNA methylation, have been reported to predict breast cancer risk. We aimed to investigate the associations between these DNA methylation-based risk factors and 18 conventional breast cancer risk factors for disease-free women. A sample of 479 individuals from the Australian Mammographic Density Twins and Sisters was used for discovery, a sample of 3354 individuals from the Melbourne Collaborative Cohort Study was used for replication, and meta-analyses pooling results from the two studies were conducted. DNAm age based on three epigenetic clocks (Hannum, Horvath and Levine) and genome-wide average DNA methylation were calculated using the HumanMethylation 450 K BeadChip assay data. The DNAm age measures were positively associated with body mass index (BMI), smoking, alcohol drinking and age at menarche (all nominal P < 0.05). Genome-wide average DNA methylation was negatively associated with smoking and number of live births, and positively associated with age at first live birth (all nominal P < 0.05). The association of DNAm age with BMI was also evident in within-twin-pair analyses that control for familial factors. This study suggests that some lifestyle and hormonal risk factors are associated with these DNA methylation-based breast cancer risk factors, and the observed associations are unlikely to be due to familial confounding but are likely causal. DNA methylation-based risk factors could interplay with conventional risk factors in modifying breast cancer risk.

2.
J Natl Cancer Inst ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584660

RESUMO

The performance of breast cancer risk models for women with a family history but negative BRCA1 and/or BRCA2 mutation test results is uncertain. We calculated the cumulative 10-year invasive breast cancer risk at cohort entry for 14,657 unaffected women (96.1% had an affected relative) not known to carry BRCA1 or BRCA2 mutations at baseline using three pedigree-based models (BOADICEA, BRCAPRO and IBIS). During follow-up, 482 women were diagnosed with invasive breast cancer. Mutation testing was conducted independent of incident cancers. All models under-predicted risk by 26.3-56.7% for women who tested negative but whose relatives had not been tested (N = 1,363; 63 breast cancers). While replication studies with larger sample sizes are needed, until these models are re-calibrated for women who test negative and have no relatives tested, caution should be used when considering changing the breast cancer risk management intensity of such women based on risk estimates from these models.

3.
Cancer Res ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578201

RESUMO

While physical activity is associated with lower breast cancer risk for average-risk women, it is not known if this association applies to women at high familial/genetic risk. We examined the association of recreational physical activity (self-reported by questionnaire) with breast cancer risk using the Prospective Family Study Cohort (ProF-SC), which is enriched with women who have a breast cancer family history (N=15,550). We examined associations of adult and adolescent recreational physical activity (quintiles of age-adjusted total metabolic equivalents (METs) per week) with breast cancer risk using multivariable Cox proportional hazards regression, adjusted for demographics, lifestyle factors, and body mass index. We tested for multiplicative interactions of physical activity with predicted absolute breast cancer familial risk based on pedigree data and with BRCA1 and BRCA2 mutation status. Baseline recreational physical activity level in the highest 4 quintiles compared with the lowest quintile was associated with a 20% lower breast cancer risk (HR=0.80, 95% CI=0.68, 0.93). The association was not modified by familial risk or BRCA mutation status (p-interactions>0.05). No overall association was found for adolescent recreational physical activity. Recreational physical activity in adulthood may lower breast cancer risk for women across the spectrum of familial risk.

4.
Int J Cancer ; 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31609476

RESUMO

Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We conducted a nested case-control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue aging, a novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99; AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70; AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue aging (p = 0.01 and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69-0.77), equivalent to a ninefold interquartile risk ratio. In summary, compared with using dense breasts alone, risk discrimination for interval breast cancers could be doubled by instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and their physicians, more information about the major consequence of having dense breasts-an increased risk of developing an interval breast cancer.

5.
Epigenetics ; : 1-11, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31552803

RESUMO

We conducted a genome-wide association study of blood DNA methylation and smoking, attempted replication of previously discovered associations, and assessed the reversibility of smoking-associated methylation changes. DNA methylation was measured in baseline peripheral blood samples for 5,044 participants in the Melbourne Collaborative Cohort Study. For 1,032 participants, these measures were repeated using blood samples collected at follow-up, a median of 11 years later. A cross-sectional analysis of the association between smoking and DNA methylation and a longitudinal analysis of changes in smoking status and changes in DNA methylation were conducted. We used our cross-sectional analysis to replicate previously reported associations for current (N = 3,327) and former (N = 172) smoking. A comprehensive smoking index accounting for the biological half-life of smoking compounds and several aspects of smoking history was constructed to assess the reversibility of smoking-induced methylation changes. This measure of lifetime exposure to smoking allowed us to detect more associations than comparing current with never smokers. We identified 4,496 cross-sectional associations at P < 10-7, including 3,296 annotated to 1,326 genes that were not previously implicated in smoking-associated DNA methylation changes at this significance threshold. We replicated the majority of previously reported associations (P < 10-7) for current and former smokers. In our data, we observed for former smokers a substantial degree of return to the methylation levels of never smokers, compared with current smokers (median: 74%, IQR = 63-86%), corresponding to small values (median: 2.75, IQR = 1.5-5.25) for the half-life parameter of the comprehensive smoking index. Longitudinal analyses identified 368 sites at which methylation changed upon smoking cessation. Our study demonstrates the usefulness of the comprehensive smoking index to detect associations between smoking and DNA methylation at CpGs across the genome, replicates the vast majority of previously reported associations, and quantifies the reversibility of smoking-induced methylation changes.

6.
Cancer Causes Control ; 30(12): 1301-1312, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31552571

RESUMO

PURPOSE: Diet and body size may affect the risk of aggressive prostate cancer (APC), but current evidence is inconclusive. METHODS: A case-control study was conducted in men under 75 years of age recruited from urology practices in Victoria, Australia; 1,254 with APC and 818 controls for whom the presence of prostate cancer had been excluded by biopsy. Dietary intakes were assessed using a validated food frequency questionnaire. Multivariable unconditional logistic regression estimated odds ratios and confidence intervals for hypothesized risk factors, adjusting for age, family history of prostate cancer, country of birth, socioeconomic status, smoking, and other dietary factors. RESULTS: Positive associations with APC (odds ratio, 95% confidence intervals, highest vs. lowest category or quintile) were observed for body mass index (1.34, 1.02-1.78, Ptrend = 0.04), and trouser size (1.54, 1.17-2.04, Ptrend = 0.001). Intakes of milk and all dairy products were inversely associated with APC risk (0.71, 9.53-0.96, Ptrend = 0.05, and 0.64, 0.48-0.87, Ptrend = 0.012, respectively), but there was little evidence of an association with other dietary variables (Ptrend > 0.05). CONCLUSIONS: We confirmed previous evidence for a positive association between body size and risk of APC, and suggest that consumption of dairy products, and milk more specifically, is inversely associated with risk.

7.
Int J Cancer ; 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265136

RESUMO

A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10-4 -3.28 × 10-8 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.

8.
Biotechniques ; 67(3): 118-122, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267764

RESUMO

We have previously reported Hi-Plex, a multiplex PCR methodology for building targeted DNA sequencing libraries that offers a low-cost protocol compatible with high-throughput processing. Here, we detail an improved protocol, Hi-Plex2, that more effectively enables the robust construction of small-to-medium panel-size libraries while maintaining low cost, simplicity and accuracy benefits of the Hi-Plex platform. Hi-Plex2 was applied to three panels, comprising 291, 740 and 1193 amplicons, targeting genes associated with risk for breast and/or colon cancer. We show substantial reduction of off-target amplification to enable library construction for small-to-medium-sized design panels not possible using the previous Hi-Plex chemistry.

9.
Clin Epigenetics ; 11(1): 66, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039828

RESUMO

BACKGROUND: It is well established that estrogens and other hormonal factors influence breast cancer susceptibility. We hypothesized that a woman's total lifetime estrogen exposure accumulates changes in DNA methylation, detectable in the blood, which could be used in risk assessment for breast cancer. METHODS: An estimated lifetime estrogen exposure (ELEE) model was defined using epidemiological data from EPIC-Italy (n = 31,864). An epigenome-wide association study (EWAS) of ELEE was performed using existing Illumina HumanMethylation450K Beadchip (HM450K) methylation data obtained from EPIC-Italy blood DNA samples (n = 216). A methylation index (MI) of ELEE based on 31 CpG sites was developed using HM450K data from EPIC-Italy and the Generations Study and evaluated for association with breast cancer risk in an independent dataset from the Generations Study (n = 440 incident breast cancer cases matched to 440 healthy controls) using targeted bisulfite sequencing. Lastly, a meta-analysis was conducted including three additional cohorts, consisting of 1187 case-control pairs. RESULTS: We observed an estimated 5% increase in breast cancer risk per 1-year longer ELEE (OR = 1.05, 95% CI 1.04-1.07, P = 3 × 10-12) in EPIC-Italy. The EWAS identified 694 CpG sites associated with ELEE (FDR Q < 0.05). We report a DNA methylation index (MI) associated with breast cancer risk that is validated in the Generations Study targeted bisulfite sequencing data (ORQ4_vs_Q1 = 1.77, 95% CI 1.07-2.93, P = 0.027) and in the meta-analysis (ORQ4_vs_Q1 = 1.43, 95% CI 1.05-2.00, P = 0.024); however, the correlation between the MI and ELEE was not validated across study cohorts. CONCLUSION: We have identified a blood DNA methylation signature associated with breast cancer risk in this study. Further investigation is required to confirm the interaction between estrogen exposure and DNA methylation in the blood.

10.
Breast Cancer Res ; 21(1): 62, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101124

RESUMO

BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/-), and time since blood collection (< 5, 5-10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.

11.
Breast Cancer Res ; 21(1): 68, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118087

RESUMO

BACKGROUND: Mammographic breast density, adjusted for age and body mass index, and a polygenic risk score (PRS), comprised of common genetic variation, are both strong risk factors for breast cancer and increase discrimination of risk models. Understanding their joint contribution will be important to more accurately predict risk. METHODS: Using 3628 breast cancer cases and 5126 controls of European ancestry from eight case-control studies, we evaluated joint associations of a 77-single nucleotide polymorphism (SNP) PRS and quantitative mammographic density measures with breast cancer. Mammographic percent density and absolute dense area were evaluated using thresholding software and examined as residuals after adjusting for age, 1/BMI, and study. PRS and adjusted density phenotypes were modeled both continuously (per 1 standard deviation, SD) and categorically. We fit logistic regression models and tested the null hypothesis of multiplicative joint associations for PRS and adjusted density measures using likelihood ratio and global and tail-based goodness of fit tests within the subset of six cohort or population-based studies. RESULTS: Adjusted percent density (odds ratio (OR) = 1.45 per SD, 95% CI 1.38-1.52), adjusted absolute dense area (OR = 1.34 per SD, 95% CI 1.28-1.41), and the 77-SNP PRS (OR = 1.52 per SD, 95% CI 1.45-1.59) were associated with breast cancer risk. There was no evidence of interaction of the PRS with adjusted percent density or dense area on risk of breast cancer by either the likelihood ratio (P > 0.21) or goodness of fit tests (P > 0.09), whether assessed continuously or categorically. The joint association (OR) was 2.60 in the highest categories of adjusted PD and PRS and 0.34 in the lowest categories, relative to women in the second density quartile and middle PRS quintile. CONCLUSIONS: The combined associations of the 77-SNP PRS and adjusted density measures are generally well described by multiplicative models, and both risk factors provide independent information on breast cancer risk.

12.
Aging (Albany NY) ; 11(7): 2045-2070, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31009935

RESUMO

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.

13.
Breast Cancer Res ; 21(1): 52, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999962

RESUMO

BACKGROUND: The use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced breast cancer risk, but it is not known if this association extends to women at familial or genetic risk. We examined the association between regular NSAID use and breast cancer risk using a large cohort of women selected for breast cancer family history, including 1054 BRCA1 or BRCA2 mutation carriers. METHODS: We analyzed a prospective cohort (N = 5606) and a larger combined, retrospective and prospective, cohort (N = 8233) of women who were aged 18 to 79 years, enrolled before June 30, 2011, with follow-up questionnaire data on medication history. The prospective cohort was further restricted to women without breast cancer when medication history was asked by questionnaire. Women were recruited from seven study centers in the United States, Canada, and Australia. Associations were estimated using multivariable Cox proportional hazards regression models adjusted for demographics, lifestyle factors, family history, and other medication use. Women were classified as regular or non-regular users of aspirin, COX-2 inhibitors, ibuprofen and other NSAIDs, and acetaminophen (control) based on self-report at follow-up of ever using the medication for at least twice a week for ≥1 month prior to breast cancer diagnosis. The main outcome was incident invasive breast cancer, based on self- or relative-report (81% confirmed pathologically). RESULTS: From fully adjusted analyses, regular aspirin use was associated with a 39% and 37% reduced risk of breast cancer in the prospective (HR = 0.61; 95% CI = 0.33-1.14) and combined cohorts (HR = 0.63; 95% CI = 0.57-0.71), respectively. Regular use of COX-2 inhibitors was associated with a 61% and 71% reduced risk of breast cancer (prospective HR = 0.39; 95% CI = 0.15-0.97; combined HR = 0.29; 95% CI = 0.23-0.38). Other NSAIDs and acetaminophen were not associated with breast cancer risk in either cohort. Associations were not modified by familial risk, and consistent patterns were found by BRCA1 and BRCA2 carrier status, estrogen receptor status, and attained age. CONCLUSION: Regular use of aspirin and COX-2 inhibitors might reduce breast cancer risk for women at familial or genetic risk.

14.
Nutr Cancer ; 71(4): 605-614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873873

RESUMO

Dietary intakes of B vitamins and other components involved in one-carbon metabolism, which is necessary for DNA replication, DNA repair, and regulation of gene expression, may be associated with carcinogenesis. We investigated associations between intakes of 11 nutrients (thiamine, riboflavin, niacin, pantothenic acid, vitamin B6, biotin, folate, vitamin B12, methionine, choline, and betaine) and gastric cancer risk. A total of 159 incident gastric cancer cases were identified from the Melbourne Collaborative Cohort Study (N = 41,513) and matched with 159 controls on year of birth, sex, and country of birth using incidence density sampling. Dietary intakes of nutrients were estimated at baseline (1990-1994) using a 121-item food frequency questionnaire. Odds ratios (ORs) and 95% confidence intervals were estimated using conditional logistic regression models adjusting for Helicobacter pylori infection, and other potential confounders. We observed a positive association between intake of niacin and overall gastric cancer risk (OR = 1.33, 95%CI: 1.01-1.75 per SD increment). For thiamine, heterogeneity by subtype (cardia and non-cardia) was found (Phet = 0.05), with weak evidence of an inverse association with cardia cancer risk. Our results do not support increasing intakes of B vitamins or other nutrients involved in one-carbon metabolism to reduce gastric cancer risk in a well-nourished population.

15.
Lancet Oncol ; 20(4): 504-517, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30799262

RESUMO

BACKGROUND: Independent validation is essential to justify use of models of breast cancer risk prediction and inform decisions about prevention options and screening. Few independent validations had been done using cohorts for common breast cancer risk prediction models, and those that have been done had small sample sizes and short follow-up periods, and used earlier versions of the prediction tools. We aimed to validate the relative performance of four commonly used models of breast cancer risk and assess the effect of limited data input on each one's performance. METHODS: In this validation study, we used the Breast Cancer Prospective Family Study Cohort (ProF-SC), which includes 18 856 women from Australia, Canada, and the USA who did not have breast cancer at recruitment, between March 17, 1992, and June 29, 2011. We selected women from the cohort who were 20-70 years old and had no previous history of bilateral prophylactic mastectomy or ovarian cancer, at least 2 months of follow-up data, and information available about family history of breast cancer. We used this selected cohort to calculate 10-year risk scores and compare four models of breast cancer risk prediction: the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm model (BOADICEA), BRCAPRO, the Breast Cancer Risk Assessment Tool (BCRAT), and the International Breast Cancer Intervention Study model (IBIS). We compared model calibration based on the ratio of the expected number of breast cancer cases to the observed number of breast cancer cases in the cohort, and on the basis of their discriminatory ability to separate those who will and will not have breast cancer diagnosed within 10 years as measured with the concordance statistic (C-statistic). We did subgroup analyses to compare the performance of the models at 10 years in BRCA1 or BRCA2 mutation carriers (ie, BRCA-positive women), tested non-carriers and untested participants (ie, BRCA-negative women), and participants younger than 50 years at recruitment. We also assessed the effect that limited data input (eg, restriction of the amount of family history and non-genetic information included) had on the models' performance. FINDINGS: After median follow-up of 11·1 years (IQR 6·0-14·4), 619 (4%) of 15 732 women selected from the ProF-SC cohort study were prospectively diagnosed with breast cancer after recruitment, of whom 519 (84%) had histologically confirmed disease. BOADICEA and IBIS were well calibrated in the overall validation cohort, whereas BRCAPRO and BCRAT underpredicted risk (ratio of expected cases to observed cases 1·05 [95% CI 0·97-1·14] for BOADICEA, 1·03 [0·96-1·12] for IBIS, 0·59 [0·55-0·64] for BRCAPRO, and 0·79 [0·73-0·85] for BRCAT). The estimated C-statistics for the complete validation cohort were 0·70 (95% CI 0·68-0·72) for BOADICEA, 0·71 (0·69-0·73) for IBIS, 0·68 (0·65-0·70) for BRCAPRO, and 0·60 (0·58-0·62) for BCRAT. In subgroup analyses by BRCA mutation status, the ratio of expected to observed cases for BRCA-negative women was 1·02 (95% CI 0·93-1·12) for BOADICEA, 1·00 (0·92-1·10) for IBIS, 0·53 (0·49-0·58) for BRCAPRO, and 0·97 (0·89-1·06) for BCRAT. For BRCA-positive participants, BOADICEA and IBIS were well calibrated, but BRCAPRO underpredicted risk (ratio of expected to observed cases 1·17 [95% CI 0·99-1·38] for BOADICEA, 1·14 [0·96-1·35] for IBIS, and 0·80 [0·68-0·95] for BRCAPRO). We noted similar patterns of calibration for women younger than 50 years at recruitment. Finally, BOADICEA and IBIS predictive scores were not appreciably affected by limiting input data to family history for first-degree and second-degree relatives. INTERPRETATION: Our results suggest that models that include multigenerational family history, such as BOADICEA and IBIS, have better ability to predict breast cancer risk, even for women at average or below-average risk of breast cancer. Although BOADICEA and IBIS performed similarly, further improvements in the accuracy of predictions could be possible with hybrid models that incorporate the polygenic risk component of BOADICEA and the non-family-history risk factors included in IBIS. FUNDING: US National Institutes of Health, National Cancer Institute, Breast Cancer Research Foundation, Australian National Health and Medical Research Council, Victorian Health Promotion Foundation, Victorian Breast Cancer Research Consortium, Cancer Australia, National Breast Cancer Foundation, Queensland Cancer Fund, Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia, and Cancer Foundation of Western Australia.

16.
Int J Cancer ; 145(12): 3207-3217, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771221

RESUMO

Our aim was to estimate how long-term mortality following breast cancer diagnosis depends on age at diagnosis, tumor estrogen receptor (ER) status, and the time already survived. We used the population-based Australian Breast Cancer Family Study which followed-up 1,196 women enrolled during 1992-1999 when aged <60 years at diagnosis with a first primary invasive breast cancer, over-sampled for younger ages at diagnosis, for whom tumor pathology features and ER status were measured. There were 375 deaths (median follow-up = 15.7; range = 0.8-21.4, years). We estimated the mortality hazard as a function of time since diagnosis using a flexible parametric survival analysis with ER status a time-dependent covariate. For women with ER-negative tumors compared with those with ER-positive tumors, 5-year mortality was initially higher (p < 0.001), similar if they survived to 5 years (p = 0.4), and lower if they survived to 10 years (p = 0.02). The estimated mortality hazard for ER-negative disease peaked at ~3 years post-diagnosis, thereafter declined with time, and at 7 years post-diagnosis became lower than that for ER-positive disease. This pattern was more pronounced for women diagnosed at younger ages. Mortality was also associated with lymph node count (hazard ratio (HR) per 10 nodes = 2.52 [95% CI:2.11-3.01]) and tumor grade (HR per grade = 1.62 [95% CI:1.34-1.96]). The risk of death following a breast cancer diagnosis differs substantially and qualitatively with diagnosis age, ER status and time survived. For women who survive >7 years, those with ER-negative disease will on average live longer, and more so if younger at diagnosis.

17.
Int J Cancer ; 145(2): 370-379, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30725480

RESUMO

Benign breast disease (BBD) is an established breast cancer (BC) risk factor, but it is unclear whether the magnitude of the association applies to women at familial or genetic risk. This information is needed to improve BC risk assessment in clinical settings. Using the Prospective Family Study Cohort, we used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of BBD with BC risk. We also examined whether the association with BBD differed by underlying familial risk profile (FRP), calculated using absolute risk estimates from the Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) model. During 176,756 person-years of follow-up (median: 10.9 years, maximum: 23.7) of 17,154 women unaffected with BC at baseline, we observed 968 incident cases of BC. A total of 4,704 (27%) women reported a history of BBD diagnosis at baseline. A history of BBD was associated with a greater risk of BC: HR = 1.31 (95% CI: 1.14-1.50), and did not differ by underlying FRP, with HRs of 1.35 (95% CI: 1.11-1.65), 1.26 (95% CI: 1.00-1.60), and 1.40 (95% CI: 1.01-1.93), for categories of full-lifetime BOADICEA score <20%, 20 to <35%, ≥35%, respectively. There was no difference in the association for women with BRCA1 mutations (HR: 1.64; 95% CI: 1.04-2.58), women with BRCA2 mutations (HR: 1.34; 95% CI: 0.78-2.3) or for women without a known BRCA1 or BRCA2 mutation (HR: 1.31; 95% CI: 1.13-1.53) (pinteraction = 0.95). Women with a history of BBD have an increased risk of BC that is independent of, and multiplies, their underlying familial and genetic risk.


Assuntos
Doenças Mamárias/epidemiologia , Neoplasias da Mama/epidemiologia , Adulto , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Doenças Mamárias/complicações , Doenças Mamárias/genética , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Feminino , Humanos , Incidência , Pessoa de Meia-Idade , Mutação , Linhagem , Estudos Prospectivos , Adulto Jovem
18.
Int J Cancer ; 145(7): 1768-1773, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694562

RESUMO

Age- and body mass index (BMI)-adjusted mammographic density is one of the strongest breast cancer risk factors. DNA methylation is a molecular mechanism that could underlie inter-individual variation in mammographic density. We aimed to investigate the association between breast cancer risk-predicting mammographic density measures and blood DNA methylation. For 436 women from the Australian Mammographic Density Twins and Sisters Study and 591 women from the Melbourne Collaborative Cohort Study, mammographic density (dense area, nondense area and percentage dense area) defined by the conventional brightness threshold was measured using the CUMULUS software, and peripheral blood DNA methylation was measured using the HumanMethylation450 (HM450) BeadChip assay. Associations between DNA methylation at >400,000 sites and mammographic density measures adjusted for age and BMI were assessed within each cohort and pooled using fixed-effect meta-analysis. Associations with methylation at genetic loci known to be associated with mammographic density were also examined. We found no genome-wide significant (p < 10-7 ) association for any mammographic density measure from the meta-analysis, or from the cohort-specific analyses. None of the 299 methylation sites located at genetic loci associated with mammographic density was associated with any mammographic density measure after adjusting for multiple testing (all p > 0.05/299 = 1.7 × 10-4 ). In summary, our study did not find evidence for associations between blood DNA methylation, as measured by the HM450 assay, and conventional mammographic density measures that predict breast cancer risk.

19.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545395

RESUMO

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Idoso , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Fatores de Risco , Software
20.
Breast Cancer Res ; 20(1): 132, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390716

RESUMO

BACKGROUND: The association between body mass index (BMI) and risk of breast cancer depends on time of life, but it is unknown whether this association depends on a woman's familial risk. METHODS: We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035 women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were 896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk associations as a function of menopausal status, age, and underlying familial risk based on pedigree data using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all measured at baseline. RESULTS: The strength and direction of the BMI risk association depended on baseline menopausal status (P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6). In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller influence than the positive association with BMI for postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk. CONCLUSIONS: The greater a woman's familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a healthy weight throughout adult life is particularly important for women with a family history of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA