Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 791206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804076

RESUMO

Osteosarcoma, Ewing sarcoma (EWS), and rhabdomyosarcoma (RMS) are the most common pediatric sarcomas. Conventional therapy for these sarcomas comprises neoadjuvant and adjuvant chemotherapy, surgical resection of the primary tumor and/or radiation therapy. Patients with metastatic, relapsed, or refractory tumors have a dismal prognosis due to resistance to these conventional therapies. Therefore, innovative therapeutic interventions, such as immunotherapy, are urgently needed. Recently, cancer research has focused attention on natural killer (NK) cells due their innate ability to recognize and kill tumor cells. Osteosarcoma, EWS and RMS, are known to be sensitive to NK cell cytotoxicity in vitro. In the clinical setting however, NK cell cytotoxicity against sarcoma cells has been mainly studied in the context of allogeneic stem cell transplantation, where a rapid immune reconstitution of NK cells plays a key role in the control of the disease, known as graft-versus-tumor effect. In this review, we discuss the evidence for the current and future strategies to enhance the NK cell-versus-pediatric sarcoma effect, with a clinical focus. The different approaches encompass enhancing antibody-dependent NK cell cytotoxicity, counteracting the NK cell mechanisms of self-tolerance, and developing adoptive NK cell therapy including chimeric antigen receptor-expressing NK cells.

2.
Eur Respir J ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675048

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. Here, we use targeted transcriptomics of FFPE tissue using the Nanostring GeoMX™ platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.

3.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426691

RESUMO

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Microambiente Celular/imunologia , Memória Imunológica/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Feminino , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445750

RESUMO

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect "stressed cells' such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.


Assuntos
Carcinoma Hepatocelular/imunologia , Células Matadoras Naturais/fisiologia , Neoplasias Hepáticas/imunologia , Animais , Carcinoma Hepatocelular/terapia , Humanos , Imunoterapia , Fígado/imunologia , Neoplasias Hepáticas/terapia , Subpopulações de Linfócitos/fisiologia
5.
Nat Commun ; 12(1): 4746, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362900

RESUMO

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Assuntos
Imunidade Celular , Células Matadoras Naturais/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias/imunologia , Animais , Antineoplásicos , Linhagem Celular Tumoral , Citocinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Metástase Neoplásica , Neoplasias/patologia
6.
Trends Microbiol ; 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253452

RESUMO

The emergence of multiantibiotic-resistant bacteria, often referred to as superbugs, is leading to infections that are increasingly difficult to treat. Further, bacteria have evolved mechanisms by which they subvert the immune response, meaning that even antibiotic-sensitive bacteria can persist through antibiotic therapy. For these reasons, a broad range of viable therapeutic alternatives or conjunctions to traditional antimicrobial therapy are urgently required to reduce the burden of disease threatened by antibiotic resistance. Immunotherapy has emerged as a leading treatment option in cancer, and researchers are now attempting to apply this to infectious disease. This review summarizes and discusses the recent advances in the field and highlights current and future perspectives of using immunotherapies to treat bacterial infections.

7.
Immunity ; 54(8): 1698-1714.e5, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34233154

RESUMO

Antigen-specific CD8+ T cells in chronic viral infections and tumors functionally deteriorate, a process known as exhaustion. Exhausted T cells are sustained by precursors of exhausted (Tpex) cells that self-renew while continuously generating exhausted effector (Tex) cells. However, it remains unknown how Tpex cells maintain their functionality. Here, we demonstrate that Tpex cells sustained mitochondrial fitness, including high spare respiratory capacity, while Tex cells deteriorated metabolically over time. Tpex cells showed early suppression of mTOR kinase signaling but retained the ability to activate this pathway in response to antigen receptor signals. Early transient mTOR inhibition improved long-term T cell responses and checkpoint inhibition. Transforming growth factor-ß repressed mTOR signaling in exhausted T cells and was a critical determinant of Tpex cell metabolism and function. Overall, we demonstrate that the preservation of cellular metabolism allows Tpex cells to retain long-term functionality to sustain T cell responses during chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Transdução de Sinais/imunologia
8.
BMC Cancer ; 21(1): 846, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294073

RESUMO

BACKGROUND: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


Assuntos
Perfilação da Expressão Gênica , Monócitos/metabolismo , Monócitos/patologia , Neoplasias da Próstata/genética , Transcriptoma , Microambiente Tumoral/genética , Biologia Computacional/métodos , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Anotação de Sequência Molecular , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade
9.
Nat Immunol ; 22(7): 851-864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099918

RESUMO

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Assuntos
Anticorpos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-33/farmacologia , Linfócitos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo
11.
Clin Transl Immunology ; 10(2): e1250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552511

RESUMO

Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.

12.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535624

RESUMO

Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define the role of ILCs in CRC we employed complementary heterotopic and chemically-induced CRC mouse models. We discovered that ILCs were abundant in CRC tumours and contributed to anti-tumour immunity. We focused on ILC2 and showed that ILC2-deficient mice developed a higher tumour burden compared with littermate wild-type controls. We generated an ILC2 gene signature and using machine learning models revealed that CRC patients with a high intratumor ILC2 gene signature had a favourable clinical prognosis. Collectively, our results highlight a critical role for ILC2 in CRC, suggesting a potential new avenue to improve clinical outcomes through ILC2-agonist based therapeutic approaches.

13.
Semin Hematol ; 57(4): 194-200, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33256912

RESUMO

Natural killer (NK) cells are an important component of the innate immune system, particularly for metastasis immunosurveillance. They can rapidly recognize and kill transformed cells without the requirement of specific neo-antigen recognition. Their effector functions are modulated by a range of stimulatory and inhibitory surface receptors that regulate their cellular activation, differentiation and homeostasis. However, cancer cells can evade NK cell detection by receptor interaction or secretion of soluble immunosuppressant molecules. Therefore, genetic reprogramming of these immune suppressing or activating receptors of NK cells is a promising strategy to augment NK cell tumoricidal functions. In this review, we highlight the current clinical trials of chimeric antigen receptor engineered NK cells with redirected antigen specificity to eliminate hematological cancers and solid tumors. New alternative strategies that are advancing NK cell engineering for cancer treatment are also outlined. Lastly, different NK cell transgenesis approaches are reviewed and compared, and we discuss how these methods can be employed to maximize their anti-tumor effector functions.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Humanos , Neoplasias/imunologia
14.
J Clin Med ; 9(8)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824699

RESUMO

Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.

15.
J Thorac Oncol ; 15(9): 1507-1521, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470639

RESUMO

INTRODUCTION: SCLC is the most aggressive subtype of lung cancer, and though most patients initially respond to platinum-based chemotherapy, resistance develops rapidly. Immunotherapy holds promise in the treatment of lung cancer; however, patients with SCLC exhibit poor overall responses highlighting the necessity for alternative approaches. Natural killer (NK) cells are an alternative to T cell-based immunotherapies that do not require sensitization to antigens presented on the surface of tumor cells. METHODS: We investigated the immunophenotype of human SCLC tumors by both flow cytometry on fresh samples and bioinformatic analysis. Cell lines generated from murine SCLC were transplanted into mice lacking key cytotoxic immune cells. Subcutaneous tumor growth, metastatic dissemination, and activation of CD8+ T and NK cells were evaluated by histology and flow cytometry. RESULTS: Transcriptomic analysis of human SCLC tumors revealed heterogeneous immune checkpoint and cytotoxic signature profiles. Using sophisticated, genetically engineered mouse models, we reported that the absence of NK cells, but not CD8+ T cells, substantially enhanced metastatic dissemination of SCLC tumor cells in vivo. Moreover, hyperactivation of NK cell activity through augmentation of interleukin-15 or transforming growth factor-ß signaling pathways ameliorated SCLC metastases, an effect that was enhanced when combined with antiprogrammed cell death-1 therapy. CONCLUSIONS: These proof-of-principle findings provide a rationale for exploiting the antitumor functions of NK cells in the treatment of patients with SCLC. Moreover, the distinct immune profiles of SCLC subtypes reveal an unappreciated level of heterogeneity that warrants further investigation in the stratification of patients for immunotherapy.


Assuntos
Neoplasias Pulmonares , Animais , Humanos , Imunoterapia , Células Matadoras Naturais , Camundongos , Linfócitos T
16.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142680

RESUMO

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias/tratamento farmacológico , Proclorperazina/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apresentação do Antígeno/efeitos dos fármacos , Biópsia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Xenoenxertos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Trastuzumab/farmacologia
18.
Front Immunol ; 11: 75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082327

RESUMO

Natural killer (NK) cell activation is controlled by a balance of activating and inhibitory signals and cytokines such as IL-15. We previously identified cytokine-inducible SH2-containing protein (CIS) as a negative regulator of IL-15 signaling in NK cells under inflammatory conditions. While the functional effect of Cish-deficiency in NK cells was obvious by their increased anti-tumor immunity and hyper-proliferative response to IL-15, it remained unclear how CIS regulates NK cell biology in steady-state. Here, we investigated the role of CIS in the homeostatic maintenance of NK cells and found CIS-ablation promoted terminal differentiation of NK cells and increased turnover, suggesting that under steady-state conditions, CIS plays a role in maintaining IL-15 driven regulation of NK cells in vivo. However, hyper-responsiveness to IL-15 did not manifest in NK cell accumulation, even when the essential NK cell apoptosis mediator, Bcl2l11 (BIM) was deleted in addition to Cish. Instead, loss of CIS conferred a lower activation threshold, evidenced by augmented functionality on a per cell basis both in vitro and in vivo without prior priming. We conclude that Cish regulates IL-15 signaling in NK cells in vivo, and through the rewiring of several activation pathways leads to a reduction in activation threshold, decreasing the requirement for priming and improving NK cell anti-tumor function. Furthermore, this study highlights the tight regulation of NK cell homeostasis by several pathways which prevent NK cell accumulation when IL-15 signaling and intrinsic apoptosis are dysregulated.


Assuntos
Diferenciação Celular/imunologia , Homeostase/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097462

RESUMO

Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18-dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.


Assuntos
Artrite Reumatoide/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/patologia , Células Matadoras Naturais/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Artrite Reumatoide/imunologia , Autoanticorpos , Feminino , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Janus Quinase 2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Neutrófilos/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
20.
Front Immunol ; 11: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063906

RESUMO

The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-ß and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Microambiente Tumoral/imunologia , Diferenciação Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Galectinas , Glicosaminoglicanos , Humanos , Imunoterapia , Interferon gama/metabolismo , Proteoglicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...