Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(12): 3390-3404, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32152629

RESUMO

Throughout the evolution of the angiosperm flower, developmental innovations have enabled the modification or elaboration of novel floral organs enabling subsequent diversification and expansion into new niches, for example the formation of novel pollinator relationships. One such developmental innovation is the fusion of various floral organs to form complex structures. Multiple types of floral fusion exist; each type may be the result of different developmental processes and is likely to have evolved multiple times independently across the angiosperm tree of life. The development of fused organs is thought to be mediated by the NAM/CUC3 subfamily of NAC transcription factors, which mediate boundary formation during meristematic development. The goal of this review is to (i) introduce the development of fused floral organs as a key 'developmental innovation', facilitated by a change in the expression of NAM/CUC3 transcription factors; (ii) provide a comprehensive overview of floral fusion phenotypes amongst the angiosperms, defining well-known fusion phenotypes and applying them to a systematic context; and (iii) summarize the current molecular knowledge of this phenomenon, highlighting the evolution of the NAM/CUC3 subfamily of transcription factors implicated in the development of fused organs. The need for a network-based analysis of fusion is discussed, and a gene regulatory network responsible for directing fusion is proposed to guide future research in this area.

2.
Curr Biol ; 30(2): 237-244.e2, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31839457

RESUMO

Secondary growth is the developmental process by which woody plants grow radially. The most complex presentations of secondary growth are found in lianas (woody vines) as a result of the unique demand to maintain stems that can twist without breaking. The complex woody forms in lianas arise as non-circular stem outlines, aberrant tissue configurations, and/or shifts in the relative abundance of secondary tissues. Previous studies demonstrate that abnormal activity of the vascular cambium leads to variant secondary growth; however, the developmental and evolutionary basis for this shift is still largely unknown. Here, we adopt an integrative approach, leveraging techniques from historically distinct disciplines-developmental anatomy and phylogenetic comparative methods-to elucidate the evolution of development of the complex woody forms in a large lineage of tropical lianas, Paullinia L. (Sapindaceae). We find that all forms of variant secondary growth trace back to the same modification during early stem development, which results in young plants with lobed stem outlines and a discontinuous distribution of vascular bundles. By placing development in a phylogenetic context, we further show that the lobed primary plant bauplan is the evolutionary precursor to all complex woody forms. We find evidence for three evolutionary mechanisms that generate phenotypic novelty: exaptation and co-opting of the ancestral bauplan, the quasi-independence of the interfascicular and fascicular cambia, and the inclusion of additional developmental stages to the end of the ancestral ontogeny. Our study demonstrates the utility of integrating developmental data within a phylogenetic framework to investigate the evolution of complex traits.

3.
Mol Phylogenet Evol ; 140: 106577, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415869

RESUMO

Paullinia L. is a genus of c. 220 mostly Neotropical forest-dwelling lianas that display a wide diversity of fruit morphologies. Paullinia resembles other members of the Paullinieae tribe in being a climber with stipulate compound leaves and paired inflorescence tendrils. However, it is distinct in having capsular fruits with woody, coriaceous, or crustaceous pericarps. While consistent in this basic plan, the pericarps of Paullinia fruits are otherwise highly variable-in some species they are winged, whereas in others they are without wings or covered with spines. With the exception of the water-dispersed indehiscent spiny fruits of some members of Paullinia sect. Castanella, all species are dehiscent, opening their capsules while they are still attached to the branch, to reveal arillate animal-dispersed seeds. Here we present a molecular phylogeny of Paullinia derived from 11 molecular markers, including nine newly-developed single-copy nuclear markers amplified by microfluidics PCR. This is the first broadly sampled molecular phylogeny for the genus. Paullinia is supported as monophyletic and is sister to Cardiospermum L., which together are sister to Serjania Mill + Urvillea Kunth. We apply this novel phylogenetic hypothesis to test previous infrageneric classifications and to infer that unwinged fruits represent the ancestral condition, from which there were repeated evolutionary transitions and reversals. However, because the seeds of both winged and unwinged fruits are dispersed by animals, we conclude that the repeated transitions in fruit morphology may relate to visual display strategies to attract animal dispersers, and do not represent transitions to wind dispersal.


Assuntos
Frutas/anatomia & histologia , Paullinia/classificação , Filogenia , Teorema de Bayes , Característica Quantitativa Herdável , Sementes/anatomia & histologia , Processos Estocásticos
4.
Am J Bot ; 105(11): 1888-1910, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30368769

RESUMO

PREMISE OF THE STUDY: We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS: We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS: Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS: We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).


Assuntos
Especiação Genética , Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , DNA Intergênico , Zingiberales/genética
5.
Am J Bot ; 105(9): 1512-1530, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30229556

RESUMO

PREMISE OF THE STUDY: Recent estimates of crown ages for cycad genera (Late Miocene) challenge us to consider what processes have produced the extant diversity of this ancient group in such relatively little time. Pleistocene climate change has driven major shifts in species distributions in Mexico and may have led to speciation in the genus Dioon by forcing populations to migrate up in elevation, thereby becoming separated by topography. METHODS: We inferred orthologs from transcriptomes of five species and sequenced these in 42 individuals representing all Dioon species. From these data and published plastid sequences, we inferred dated species trees and lineage-specific diversification rates. KEY RESULTS: Analyses of 84 newly sequenced nuclear orthologs and published plastid data confirm four major clades within Dioon, all of Pleistocene age. Gene tree analysis, divergence dates, and an increase in diversification rate support very recent and rapid divergence of extant taxa. CONCLUSIONS: This study confirms the Pleistocene age of Dioon species and implicates Pleistocene climate change and established topography in lineage spitting. These results add to our understanding of the cycads as evolutionarily dynamic lineages, not relicts or evolutionary dead ends. We also find that well-supported secondary calibration points can be reliable in the absence of fossils. Our hypothesis of lineage splitting mediated by habitat shifts may be applicable to other taxa that are restricted to elevation specific ecotones.


Assuntos
Zamiaceae , Biodiversidade , Evolução Biológica , Mudança Climática/história , História Antiga , Camada de Gelo , Zamiaceae/genética , Zamiaceae/fisiologia
6.
Am J Bot ; 105(8): 1389-1400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071130

RESUMO

PREMISE OF THE STUDY: Inclusion of fossils in phylogenetic analyses is necessary in order to construct a comprehensive "tree of death" and elucidate evolutionary history of taxa; however, such incorporation of fossils in phylogenetic reconstruction is dependent on the availability and interpretation of extensive morphological data. Here, the Zingiberales, whose familial relationships have been difficult to resolve with high support, are used as a case study to illustrate the importance of including fossil taxa in systematic studies. METHODS: Eight fossil taxa and 43 extant Zingiberales were coded for 39 morphological seed characters, and these data were concatenated with previously published molecular sequence data for analysis in the program MrBayes. KEY RESULTS: Ensete oregonense is confirmed to be part of Musaceae, and the other seven fossils group with Zingiberaceae. There is strong support for Spirematospermum friedrichii, Spirematospermum sp. 'Goth', S. wetzleri, and Striatornata sanantoniensis in crown Zingiberaceae while "Musa" cardiosperma, Spirematospermum chandlerae, and Tricostatocarpon silvapinedae are best considered stem Zingiberaceae. Inclusion of fossils explains how different topologies from morphological and molecular data sets is due to shared plesiomorphic characters shared by Musaceae, Zingiberaceae, and Costaceae, and most of the fossils. CONCLUSIONS: Inclusion of eight fossil taxa expands the Zingiberales tree and helps explain the difficulty in resolving relationships. Inclusion of fossils was possible in part due to a large morphological data set built using nondestructive microcomputed tomography data. Collaboration between paleo- and neobotanists and technology such as microcomputed tomography will help to build the tree of death and ultimately improve our understanding of the evolutionary history of monocots.


Assuntos
Fósseis/anatomia & histologia , Filogenia , Zingiberales/genética
7.
PeerJ ; 6: e5490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155368

RESUMO

The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.

8.
Appl Plant Sci ; 5(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989824

RESUMO

PREMISE OF THE STUDY: We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. METHODS AND RESULTS: Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. CONCLUSIONS: This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

9.
Mol Phylogenet Evol ; 117: 150-167, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27998817

RESUMO

Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences. Finally, we note our nearly complete species sampling and dated phylogeny allow for an assessment of taxonomic history in terms of phylogenetic diversity. We find approximately half of the currently recognized species, corresponding to half of the phylogenetic diversity, have been described since 1975, highlighting the continued importance of basic taxonomic research and conservation initiatives to preserve both described and undiscovered species of Heliconia.


Assuntos
Flores/anatomia & histologia , Flores/genética , Heliconiaceae/anatomia & histologia , Heliconiaceae/genética , Filogenia , Núcleo Celular/genética , Fósseis , Mapeamento Geográfico , Inflorescência/anatomia & histologia , Inflorescência/genética , Plastídeos/genética , Polinização
10.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27594701

RESUMO

Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales.

11.
Mol Phylogenet Evol ; 103: 55-63, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27400627

RESUMO

Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts.


Assuntos
Gengibre/classificação , Animais , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Especiação Genética , Gengibre/genética , Filogenia , Filogeografia , Folhas de Planta/genética , Análise de Sequência de DNA
12.
PeerJ ; 4: e1584, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819846

RESUMO

The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths.

14.
PeerJ ; 3: e1470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713234

RESUMO

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

15.
Am J Bot ; 102(11): 1814-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26507111

RESUMO

PREMISE OF THE STUDY: Recent phylogenetic analyses based on molecular data suggested that the monocot family Zingiberaceae be separated into four subfamilies and four tribes. Robust morphological characters to support these clades are lacking. Seeds were analyzed in a phylogenetic context to test independently the circumscription of clades and to better understand evolution of seed characters within Zingiberaceae. METHODS: Seventy-five species from three of the four subfamilies were analyzed using synchrotron based x-ray tomographic microscopy (SRXTM) and scored for 39 morphoanatomical characters. KEY RESULTS: Zingiberaceae seeds are some of the most structurally complex seeds in angiosperms. No single seed character was found to distinguish each subfamily, but combinations of characters were found to differentiate between the subfamilies. Recognition of the tribes based on seeds was possible for Globbeae, but not for Alpinieae, Riedelieae, or Zingibereae, due to considerable variation. CONCLUSIONS: SRXTM is an excellent, nondestructive tool to capture morphoanatomical variation of seeds and allows for the study of taxa with limited material available. Alpinioideae, Siphonochiloideae, Tamijioideae, and Zingiberoideae are well supported based on both molecular and morphological data, including multiple seed characters. Globbeae are well supported as a distinctive tribe within the Zingiberoideae, but no other tribe could be differentiated using seeds due to considerable homoplasy when compared with currently accepted relationships based on molecular data. Novel seed characters suggest tribal affinities for two currently unplaced Zingiberaceae taxa: Siliquamomum may be related to Riedelieae and Monolophus to Zingibereae, but further work is needed before formal revision of the family.


Assuntos
Sementes/anatomia & histologia , Zingiberaceae/anatomia & histologia , Evolução Biológica , Sementes/genética , Síncrotrons , Tomografia por Raios X , Zingiberaceae/genética
16.
Syst Bot ; 40(1): 104-115, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26146450

RESUMO

Rapid radiations are notoriously difficult to resolve, yet understanding phylogenetic patterns in such lineages can be useful for investigating evolutionary processes associated with bursts of speciation and morphological diversification. Here we present an expansive molecular phylogeny of Costus L. (Costaceae Nakai) with a focus on the Neotropical species within the clade, sampling 47 of the known 51 Neotropical species and including five molecular markers for phylogenetic analysis (ITS, ETS, rps16, trnL-F, and CaM). We use the phylogenetic results to investigate shifts in pollination syndrome, with the intention of addressing potential mechanisms leading to the rapid radiation documented for this clade. Our ancestral reconstruction of pollination syndrome presents the first evidence in this genus of an evolutionary toggle in pollination morphologies, demonstrating both the multiple independent evolutions of ornithophily (bird pollination) as well as reversals to melittophily (bee pollination). We show that the ornithophilous morphology has evolved at least eight times independently with four potential reversals to melittophilous morphology, and confirm prior work showing that neither pollination syndrome defines a monophyletic lineage. Based on the current distribution for the Neotropical and African species, we reconstruct the ancestral distribution of the Neotropical clade as the Pacific Coast of Mexico and Central America. Our results indicate an historic dispersal of a bee-pollinated taxon from Africa to the Pacific Coast of Mexico/Central America, with subsequent diversification leading to the evolution of a bird-pollinated floral morphology in multiple derived lineages.

17.
Evodevo ; 6: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883781

RESUMO

BACKGROUND: The ABC model of flower development describes the molecular basis for specification of floral organ identity in model eudicots such as Arabidopsis and Antirrhinum. According to this model, expression of C-class genes is linked to stamen and gynoecium organ identity. The Zingiberales is an order of tropical monocots in which the evolution of floral morphology is characterized by a marked increase in petaloidy in the androecium. Petaloidy is a derived characteristic of the ginger families and seems to have arisen in the common ancestor of the ginger clade. We hypothesize that duplication of the C-class AGAMOUS (AG) gene followed by divergence of the duplicated AG copies during the diversification of the ginger clade lineages explains the evolution of petaloidy in the androecium. In order to address this hypothesis, we carried out phylogenetic analyses of the AG gene family across the Zingiberales and investigated patterns of gene expression within the androecium. RESULTS: Phylogenetic analysis supports a scenario in which Zingiberales-specific AG genes have undergone at least one round of duplication. Gene duplication was immediately followed by divergence of the retained copies. In particular, we detect positive selection in the third alpha-helix of the K domain of Zingiberales AGAMOUS copy 1 (ZinAG-1). A single fixed amino acid change is observed in ZinAG-1 within the ginger clade when compared to the banana grade. Expression analyses of AG and APETALA1/FRUITFULL (AP1/FUL) in Musa basjoo is similar to A- and C-class gene expressions in the Arabidopsis thaliana model, while Costus spicatus exhibits simultaneous expression of AG and AP1/FUL in most floral organs. We propose that this novel expression pattern could be correlated with the evolution of androecial petaloidy within the Zingiberales. CONCLUSIONS: Our results present an intricate story in which duplication of the AG lineage has lead to the retention of at least two diverged Zingiberales-specific copies, ZinAG-1 and Zingiberales AGAMOUS copy 2 (ZinAG-2). Positive selection on ZinAG-1 residues suggests a mechanism by which AG gene divergence may explain observed morphological changes in Zingiberales flowers. Expression data provides preliminary support for the proposed mechanism, although further studies are required to fully test this hypothesis.

18.
Dev Dyn ; 244(9): 1121-1132, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25866364

RESUMO

BACKGROUND: The development of petal-like organs has occurred repetitively throughout angiosperm evolution. Despite homoplasy, it is possible that common underlying molecular mechanisms are repeatedly recruited to drive the development of petaloid organs. In Zingiberales, infertile, petal-like structures replace fertile stamens, resulting in petaloidy in androecial whorls. Assuming that androecial petaloidy is a shared derived characteristic, we expect to find common ultrastructure and molecular mechanisms underlying androecial petaloidy across Zingiberales. RESULTS: We show that petaloidy in Zingiberales is associated with tightly packed, protruding epidermal cells. Expression patterns for candidate genes involved in petal identity differ between the petaloid organs of Costaceae v. Cannaceae, despite similar macro- and microscopic organization. For all candidate gene families analyzed, our data suggest at least one Zingiberales-specific duplication event. CONCLUSIONS: Our data suggest that the patterns of B-class gene expression across the Zingiberales do not correlate with the occurrence of petaloidy, indicating that androecial petaloidy might have evolved independently of B-class gene expression in some lineages. It is possible that gene duplication may play a role in the diversity of petaloid structures found throughout the Zingiberales. It is likely that Zingiberales petaloidy may also result from the deployment of genes other than those involved in specification of petal identity. Developmental Dynamics 244:1121-1132, 2015. © 2015 Wiley Periodicals, Inc.

19.
Front Plant Sci ; 6: 1106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734021

RESUMO

The Zingiberales is an order of tropical monocots that exhibits diverse floral morphologies. The evolution of petaloid, laminar stamens, staminodes, and styles contributes to this diversity. The laminar style is a derived trait in the family Cannaceae and plays an important role in pollination as its surface is used for secondary pollen presentation. Previous work in the Zingiberales has implicated YABBY2-like genes, which function in promoting laminar outgrowth, in the evolution of stamen morphology. Here, we investigate the evolution and expression of Zingiberales YABBY2-like genes in order to understand the evolution of the laminar style in Canna. Phylogenetic analyses show that multiple duplication events have occurred in this gene lineage prior to the diversification of the Zingiberales. Reverse transcription-PCR in Canna, Costus, and Musa reveals differential expression across floral organs, taxa, and gene copies, and a role for YABBY2-like genes in the evolution of the laminar style is proposed. Selection tests indicate that almost all sites in conserved domains are under purifying selection, consistent with their functional relevance, and a motif unique to monocot YABBY2-like genes is identified. These results contribute to our understanding of the molecular mechanisms underlying the evolution of floral morphologies.

20.
New Phytol ; 206(1): 74-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25470511

RESUMO

Evolutionary developmental biology (evodevo) attempts to explain how the process of organismal development evolves, utilizing a comparative approach to investigate changes in developmental pathways and processes that occur during the evolution of a given lineage. Evolutionary genetics uses a population approach to understand how organismal changes in form or function are linked to underlying genetics, focusing on changes in gene and genotype frequencies within populations and the fixation of genotypic variation into traits that define species or evoke speciation events. Microevolutionary processes, including mutation, genetic drift, natural selection and gene flow, can provide the foundation for macroevolutionary patterns observed as morphological evolution and adaptation. The temporal element linking microevolutionary processes to macroevolutionary patterns is development: an organism's genotype is converted to phenotype by ontogenetic processes. Because selection acts upon the phenotype, the connection between evolutionary genetics and developmental evolution becomes essential to understanding adaptive evolution in organismal form and function. Here, we discuss how developmental genetic studies focused on key developmental processes could be linked within a comparative framework to study the developmental genetics of adaptive evolution, providing examples from research on two key processes of plant evodevo - floral symmetry and organ fusion - and their role in the adaptation of floral form.


Assuntos
Adaptação Fisiológica , Flores/fisiologia , Redes Reguladoras de Genes , Evolução Biológica , Biologia do Desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Fenótipo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA