Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Mater ; 32(23): e1906478, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32347620


Above-equilibrium "hot"-carrier generation in metals is a promising route to convert photons into electrical charge for efficient near-infrared optoelectronics. However, metals that offer both hot-carrier generation in the near-infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble-transition alloy, Aux Pd1- x , outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near-infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50 Pd50 provides a 20-fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble-transition alloys can excel at hot-carrier generation reveals a new material platform for near-infrared optoelectronic devices.

Langmuir ; 35(51): 16726-16733, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31786916


Environmentally persistent free radicals (EPFRs) are formed by the adsorption of substituted aromatic precursors on the surface of metal oxides and are known to have significant health and environmental impact due to their unique stability. In this article, the formation of EPFRs is studied by adsorption of phenol on ZnO, CuO, Fe2O3, and TiO2 nanoparticles (∼10-50 nm) at high temperatures. Electron paramagnetic resonance indicates the formation of phenoxyl-type radicals. Fourier transform infrared spectroscopy provides further evidence of EPFR formation by the disappearance of -OH groups, indicating the chemisorption of the organic precursor on the metal oxide surface. These results are further confirmed by inelastic neutron scattering, which shows both ring out-of-plane bend and C-H in-plane bend motions characteristic of phenol adsorption on the studied systems. Also, the changes in the oxidation state of the metal cations are investigated by X-ray photoelectron spectroscopy, which shows that the direction of electron transfer (redox) during phenol chemisorption is strongly dependent on surface properties as well as surface defects of the metal oxide surface.

Langmuir ; 31(13): 3869-75, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25774565


Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system-phenol chemisorbed on TiO2(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature. We show strong evidence that, upon exposure at high temperature, empty states in the TiO2 are filled and the phenol HOMO is depopulated, as has been proposed in a conceptual model of EPFR formation. This experimental evidence of charge transfer provides a deeper understanding of the EPFR formation mechanism to guide future experimental and computational studies as well as potential environmental remediation strategies.

Fenol/química , Fenóis/química , Titânio/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia Fotoeletrônica
Chem Phys ; 422: 277-282, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24443627


We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO2(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation. The identical shifts are observed from EELS studies of phenoxyl radicals on ultrathin alumina grown on NiAl(110), indicating that this shift in the π-π* transition may be taken as a general hallmark of phenoxyl radical formation.

Science ; 320(5884): 1755-9, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18535207


Titanium dioxide (TiO2) has a number of uses in catalysis, photochemistry, and sensing that are linked to the reducibility of the oxide. Usually, bridging oxygen (Obr) vacancies are assumed to cause the Ti3d defect state in the band gap of rutile TiO2(110). From high-resolution scanning tunneling microscopy and photoelectron spectroscopy measurements, we propose that Ti interstitials in the near-surface region may be largely responsible for the defect state in the band gap. We argue that these donor-specific sites play a key role in and may dictate the ensuing surface chemistry, such as providing the electronic charge required for O2 adsorption and dissociation. Specifically, we identified a second O2 dissociation channel that occurs within the Ti troughs in addition to the O2 dissociation channel in O(br) vacancies. Comprehensive density functional theory calculations support these experimental observations.