Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 13(11): 12415-12424, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31560851

RESUMO

Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials' dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be efficiently dispersed in liquid Ga and lightweight alloys of Al, Mg, and Li. We show that the Lifshitz theory predicts strong van der Waals attraction between nanoscale objects interacting through liquid metals. However, a uniform distribution of MXenes in liquid metals can be achieved through colloidal gelation, where particles form self-supporting networks stable against macroscopic phase segregation. This network acts as a reinforcement boosting mechanical properties of the resulting metal-matrix composite. By choosing Mg-Li alloy as an example of ultralightweight metal matrix and Ti3C2Tx MXene as a nanoscale reinforcement, we apply a liquid metal gelation technique to fabricate functional nanocomposites with an up to 57% increase in the specific yield strength without compromising the matrix alloy's plasticity. MXenes largely retain their phase and 2D morphology after processing in liquid Mg-Li alloy at 700 °C. The 2D morphology enables formation of a strong semicoherent interface between MXene and metal matrix, manifested by biaxial strain of the MXene lattice inside the metal matrix. This work expands applications for MXenes and shows the potential for developing MXene-reinforced metal matrix composites for structural alloys and other emerging applications with metal-MXene interfaces, such as batteries and supercapacitors.

2.
J Am Chem Soc ; 141(34): 13487-13496, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31379152

RESUMO

In contrast to molecular systems, which are defined with atomic precision, nanomaterials generally show some heterogeneity in size, shape, and composition. The sample inhomogeneity translates into a distribution of energy levels, band gaps, work functions, and other characteristics, which detrimentally affect practically every property of functional nanomaterials. We discuss a novel synthetic strategy, colloidal atomic layer deposition (c-ALD) with stationary reactant phases, which largely circumvents the limitations of traditional colloidal syntheses of nano-heterostructures with atomic precision. This approach allows for significant reduction of inhomogeneity in nanomaterials in complex nanostructures without compromising their structural perfection and enables the synthesis of epitaxial nano-heterostructures of unprecedented complexity. The improved synthetic control ultimately enables bandgap and strain engineering in colloidal nanomaterials with close to atomic accuracy. To demonstrate the power of the new c-ALD method, we synthesize a library of complex II-VI semiconductor nanoplatelet heterostructures. By combining spectroscopic and computational studies, we elucidate the subtle interplay between quantum confinement and strain effects on the optical properties of semiconductor nanostructures.

3.
ACS Nano ; 13(5): 5760-5770, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30964280

RESUMO

The nature of the interface between the solute and the solvent in a colloidal solution has attracted attention for a long time. For example, the surface of colloidal nanocrystals (NCs) is specially designed to impart colloidal stability in a variety of polar and nonpolar solvents. This work focuses on a special type of colloids where the solvent is a molten inorganic salt or organic ionic liquid. The stability of such colloids is hard to rationalize because solvents with high density of mobile charges efficiently screen the electrostatic double-layer repulsion, and purely ionic molten salts represent an extreme case where the Debye length is only ∼1 Å. We present a detailed investigation of NC dispersions in molten salts and ionic liquids using small-angle X-ray scattering (SAXS), atomic pair distribution function (PDF) analysis and molecular dynamics (MD) simulations. Our SAXS analysis confirms that a wide variety of NCs (Pt, CdSe/CdS, InP, InAs, ZrO2) can be uniformly dispersed in molten salts like AlCl3/NaCl/KCl (AlCl3/AlCl4-) and NaSCN/KSCN and in ionic liquids like 1-butyl-3-methylimidazolium halides (BMIM+X-, where X = Cl, Br, I). By using a combination of PDF analysis and molecular modeling, we demonstrate that the NC surface induces a solvent restructuring with electrostatic correlations extending an order of magnitude beyond the Debye screening length. These strong oscillatory ion-ion correlations, which are not accounted by the traditional mechanisms of steric and electrostatic stabilization of colloids, offer additional insight into solvent-solute interactions and enable apparently "impossible" colloidal stabilization in highly ionized media.

4.
J Am Chem Soc ; 140(38): 12144-12151, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30125092

RESUMO

Control of composition, stoichiometry, and defects in colloidal quantum dots (QDs) of III-V semiconductors has proven to be difficult due to their covalent character. Whereas the synthesis of colloidal indium pnictides such as InP, InAs, and InSb has made significant progress, gallium-containing colloidal III-V QDs still remain largely elusive. Gallium pnictides represent an important class of semiconductors due to their excellent optoelectronic properties in the bulk; however, the difficulty with the synthesis of gallium-containing colloidal III-V QDs has largely prohibited their exploration as solution-processed semiconductors. Here we introduce molten inorganic salts as high-temperature solvents for the synthesis and manipulation of III-V QDs. We demonstrate cation exchange reactions on presynthesized InP and InAs QDs to form In1- xGa xP and In1- xGa xAs QDs at temperatures above 380 °C. This approach produces novel ternary alloy QDs with controllable compositions that show size- and composition-dependent absorption and emission features. Emission quantum yields of up to ∼50% can be obtained for In1- xGa xP/ZnS core-shell QDs. A comparison of the optical properties of InP/ZnS core-shells with In1- xGa xP/ZnS core-shells reveals that Ga incorporation leads to significant improvement in the optical properties of III-V/II-VI core-shell emitters which is of great importance for quantum dot-based lighting and display applications. This work also demonstrates the potential of molten inorganic salts as versatile solvents for the synthesis and processing of colloidal nanomaterials at temperatures inaccessible for traditional solvents.

5.
Nat Nanotechnol ; 13(9): 841-848, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013216

RESUMO

Semiconducting nanomaterials synthesized using wet chemical techniques play an important role in emerging optoelectronic and photonic technologies. Controlling the surface chemistry of the nano building blocks and their interfaces with ligands is one of the outstanding challenges for the rational design of these systems. We present an integrated theoretical and experimental approach to characterize, at the atomistic level, buried interfaces in solids of InAs nanoparticles capped with Sn2S64- ligands. These prototypical nanocomposites are known for their promising transport properties and unusual negative photoconductivity. We found that inorganic ligands dissociate on InAs to form a surface passivation layer. A nanocomposite with unique electronic and transport properties is formed, that exhibits type II heterojunctions favourable for exciton dissociation. We identified how the matrix density, sulfur content and specific defects may be designed to attain desirable electronic and transport properties, and we explain the origin of the measured negative photoconductivity of the nanocrystalline solids.

6.
Nano Lett ; 17(3): 2094-2101, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28191964

RESUMO

GaAs is one of the most important semiconductors. However, colloidal GaAs nanocrystals remain largely unexplored because of the difficulties with their synthesis. Traditional synthetic routes either fail to produce pure GaAs phase or result in materials whose optical properties are very different from the behavior expected for quantum dots of direct-gap semiconductors. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS, transient absorption, and EPR spectroscopies, we conclude that unusual optical properties of colloidal GaAs NCs can be related to the presence of Ga vacancies and lattice disorder. These defects do not manifest themselves in TEM images and powder X-ray diffraction patterns but are responsible for the lack of absorption features even in apparently crystalline GaAs nanoparticles. We introduce a novel molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.

7.
Dalton Trans ; 41(14): 4135-45, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22281658

RESUMO

A hydrothermal reaction of a mixture of cobalt salt, 5-nitro isophthalic acid and triazole (compound I), 3-aminotriazole (3-AT) (compound II) and 3,5-diaminotriazole (compound III) at 220 °C for a day resulted in the isolation of three different, but related, compounds containing cobalt clusters. The three-dimensional compounds have Co(5) (compound-I) and Co(4) (compound-II and compound-III) clusters connected through the carboxylate and triazolate forming structures with pcu net (compound-I and compound-II) and a graphite-related net (compound-III). The water molecules (coordinated and lattice) can be readily re-adsorbed by the structure of compound-I, whereas the removal of the water molecule leads to a collapse of the structures of compound-II and compound-III. The TGA studies suggest the possibility of an intermediate structure for compound-1, which was investigated using in situ single crystal to single crystal (SCSC) transformations. The identification of an intermediate structure during the dehydration/hydration cycle in compound-I is important and provides important pointers about the dynamics of the water molecules in these compounds. Compound-I was also investigated in detail using a variety of spectroscopic techniques such as IR, UV-Vis spectroscopy etc. Magnetic studies on the synthesized compounds indicate anti-ferromagnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA