Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(5): 054714, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035453

RESUMO

The morphology and reactivity of mass-selected titania clusters, Ti3O6 and Ti3O5, deposited onto Au(111) were studied by scanning tunneling microscopy and temperature programmed desorption. Despite differing by only one oxygen atom, the stoichiometric Ti3O6 and the sub-stoichiometric ("reduced") Ti3O5 clusters exhibit very different structures and preferred binding sites. The Ti3O6 clusters bind at step edges and form small assemblies (2-4 clusters) on Au terraces, while the "reduced" Ti3O5 clusters form much larger fractal-like assemblies that can extend across step boundaries. Annealing the Ti3O5,6/Au(111) systems to higher temperatures causes changes in the size-distributions of cluster assemblies, but does not lead to the formation of TiOx nanoislands for temperatures ≤700 K. Reactivity studies show that the reduced Ti3O5 cluster has higher activity than Ti3O6 for 2-propanol dehydration, although both clusters exhibit substantial activity for dehydrogenation to acetone. Calculations using DFT+U suggest that the differences in aggregate morphology and reactivity are associated with the number of undercoordinated Ti3c sites in the supported clusters.

3.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046292

RESUMO

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

4.
J Am Chem Soc ; 140(21): 6575-6581, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29738671

RESUMO

We studied the structure of the copper-cobalt (CuCo) surface alloy, formed by Co deposition on Cu(110), in dynamic equilibrium with CO. Using scanning tunneling microscopy (STM), we found that, in vacuum at room temperature and at low Co coverage, clusters of a few Co atoms substituting Cu atoms form at the surface. At CO pressures in the Torr range, we found that up to 2.5 CO molecules can bind on a single Co atom, in carbonyl-like configurations. Based on high-resolution STM images, together with density functional theory calculations, we determined the most stable CuCo cluster structures formed with bound CO. Such carbonyl-like formation manifests in shifts in the binding energy of the Co core-level peaks in X-ray photoelectron spectra, as well as shifts in the vibrational modes of adsorbed CO in infrared reflection absorption spectra. The multiple CO adsorption on a Co site weakens the Co-CO bond and thus reduces the C-O bond scission probability. Our results may explain the different product distribution, including higher selectivity toward alcohol formation, when bimetallic CuCo catalysts are used compared to pure Co.

5.
Phys Chem Chem Phys ; 20(19): 13122-13126, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29737995

RESUMO

Disorder-Order transitions in a weakly adsorbed two-dimensional film have been identified for the first time using ambient-pressure scanning tunneling microscopy (AP-STM) and X-ray photoelectron spectroscopy (AP-XPS). As of late, great effort has been devoted to the capture, activation and conversion of carbon dioxide (CO2), a ubiquitous greenhouse gas and by-product of many chemical processes. The high stability and non-polar nature of CO2 leads to weak bonding with well-defined surfaces of metals and oxides. CO2 adsorbs molecularly on the rutile TiO2(110) surface with a low adsorption energy of ∼10 kcal mol-1. In spite of this weak binding, images of AP-STM show that a substantial amount of CO2 can reside on a TiO2(110) surface at room temperature forming two-dimensionally ordered films. We have employed microscopic imaging under in situ conditions, soft X-ray spectroscopy and theory to decipher the unique ordering behavior seen for CO2 on TiO2(110).

6.
J Phys Chem B ; 122(2): 855-863, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29091455

RESUMO

The role of oxygen in the activation of C-H bonds in methane on clean and oxygen-precovered Cu(111) and Cu2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and "moderate pressures" was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C-H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole-dipole attraction of O-H and Cu-CH3 species. The C-H bond activation barriers on Cu2O(111) surfaces are large due to the weak stabilization of H and CH3 fragments.

7.
Rev Sci Instrum ; 88(10): 105109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092473

RESUMO

This paper describes the design and construction of a compact, "user-friendly" polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, from the surface bound species. A spectral frequency range between 1000 cm-1 and 4000 cm-1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ∼2 min at 4 cm-1 resolution, we have also acquired higher resolution spectra at 0.25 cm-1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily reconfigurable. It also features a "vacuum suitcase" that allows for the integration of the PM-IRRAS system with the rest of the suite of instrumentation at our laboratory available to external users through the CFN user proposal system.

8.
ACS Appl Mater Interfaces ; 9(29): 24655-24661, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28671451

RESUMO

The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. However, current electrode materials cannot meet both requirements, resulting in poor performance. Herein, we creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

9.
Nat Commun ; 8: 16118, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714478

RESUMO

The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

10.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28498642

RESUMO

Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. A room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness, which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.

11.
J Phys Chem Lett ; 7(19): 3866-3872, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27631665

RESUMO

Potassium deposition on TiO2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (∼3.2 eV) with a small barrier (∼0.25 eV) for diffusion on the oxide surface. In scanning tunneling microscopy images, the adsorbed alkali atoms lose their mobility when in contact with surface OH groups. Furthermore, K adatoms facilitate the dissociation of water on the titania surface. The K-(OH) species generated are good sites for the binding of gold clusters on the TiO2(110) surface, producing Au/K/TiO2(110) systems with high activity for the water-gas shift.

12.
J Phys Chem Lett ; 7(13): 2627-39, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27327114

RESUMO

Inverse oxide/metal catalysts have shown to be excellent systems for studying the role of the oxide and oxide-metal interface in catalytic reactions. These systems can have special structural and catalytic properties due to strong oxide-metal interactions difficult to attain when depositing a metal on a regular oxide support. Oxide phases that are not seen or are metastable in a bulk oxide can become stable in an oxide/metal system opening the possibility for new chemical properties. Using these systems, it has been possible to explore fundamental properties of the metal-oxide interface (composition, structure, electronic state), which determine catalytic performance in the oxidation of CO, the water-gas shift and the hydrogenation of CO2 to methanol. Recently, there has been a significant advance in the preparation of oxide/metal catalysts for technical or industrial applications. One goal is to identify methods able to control in a precise way the size of the deposited oxide particles and their structure on the metal substrate.

13.
Phys Chem Chem Phys ; 18(23): 15972-9, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27240884

RESUMO

Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti(3+), significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.

14.
Angew Chem Int Ed Engl ; 55(26): 7455-9, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27144344

RESUMO

Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.

15.
Phys Chem Chem Phys ; 18(25): 16621-8, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27095305

RESUMO

Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

16.
Phys Chem Chem Phys ; 17(48): 32251-6, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26580293

RESUMO

In this study we probe the electrocatalytic activity of Pt nanoparticles supported on ceria nanoparticles (NPs) and nanorods (NRs) in the ethanol oxidation reaction (EOR) in alkaline media. The goal of this study was to relate morphology, support structure and composition to the EOR catalytic activity by using in situ X-ray absorption fine structure (XAFS) studies. Cyclic voltammetry experiments showed that both ceria supported catalysts (NP vs. NR) had similar peak current densities at fast scan rates, however at slow scan rates, the ceria NR catalyst showed superior catalytic activity. In situ XAFS studies in KOH showed that both ceria supported catalysts had more electron density in their d-band (with the ceria NR having more electron density overall) than ceria - free Pt/Vulcan standard. However, in an ethanol solution the ceria NR catalyst had the least electron density. We propose that this change is due to the increased charge transfer efficiency between the ceria nanorod support and platinum. In the KOH solution, the increased electron density makes the platinum less electrophilic and hinders Pt-OH bond formation. In the EtOH solution, platinum's increased nucleophilicity facilitates the bond formation between Pt and the electron deficient carbon in ethanol which in turn withdraws the electron density from platinum and increases the white line intensity as observed in the XAS measurements.

17.
Angew Chem Int Ed Engl ; 54(41): 11946-51, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26215635

RESUMO

Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate that by generating highly dispersed and stabilized Cu(+) active sites in a TiCuOx mixed oxide the epoxidation selectivity can be tuned. The TiCuOx surface anchors the key surface intermediate, an oxametallacycle, leading to higher selectivity for epoxidation of propylene.


Assuntos
Alcenos/química , Cobre/química , Compostos de Epóxi/química , Titânio/química , Catálise , Modelos Moleculares , Propriedades de Superfície
18.
J Am Chem Soc ; 137(32): 10104-7, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26218072

RESUMO

Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeO(x)/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.

19.
Acc Chem Res ; 48(7): 2151-8, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26103058

RESUMO

Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.

20.
J Chem Phys ; 142(10): 101901, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770490

RESUMO

The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy. When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the 11̄0 direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free -NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA