Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 3: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195364

RESUMO

Hydrocephalus is a common disorder caused by the buildup of cerebrospinal fluid (CSF) in the brain. Treatment typically involves the surgical implantation of a pressure-regulated silicone tube assembly, known as a shunt. Unfortunately, shunts have extremely high failure rates and diagnosing shunt malfunction is challenging due to a combination of vague symptoms and a lack of a convenient means to monitor flow. Here, we introduce a wireless, wearable device that enables precise measurements of CSF flow, continuously or intermittently, in hospitals, laboratories or even in home settings. The technology exploits measurements of thermal transport through near-surface layers of skin to assess flow, with a soft, flexible, and skin-conformal device that can be constructed using commercially available components. Systematic benchtop studies and numerical simulations highlight all of the key considerations. Measurements on 7 patients establish high levels of functionality, with data that reveal time dependent changes in flow associated with positional and inertial effects on the body. Taken together, the results suggest a significant advance in monitoring capabilities for patients with shunted hydrocephalus, with potential for practical use across a range of settings and circumstances, and additional utility for research purposes in studies of CSF hydrodynamics.

2.
Sci Transl Med ; 10(465)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381410

RESUMO

Hydrocephalus is a common and costly neurological condition caused by the overproduction and/or impaired resorption of cerebrospinal fluid (CSF). The current standard of care, ventricular catheters (shunts), is prone to failure, which can result in nonspecific symptoms such as headaches, dizziness, and nausea. Current diagnostic tools for shunt failure such as computed tomography (CT), magnetic resonance imaging (MRI), radionuclide shunt patency studies (RSPSs), and ice pack-mediated thermodilution have disadvantages including high cost, poor accuracy, inconvenience, and safety concerns. Here, we developed and tested a noninvasive, skin-mounted, wearable measurement platform that incorporates arrays of thermal sensors and actuators for precise, continuous, or intermittent measurements of flow through subdermal shunts, without the drawbacks of other methods. Systematic theoretical and experimental benchtop studies demonstrate high performance across a range of practical operating conditions. Advanced electronics designs serve as the basis of a wireless embodiment for continuous monitoring based on rechargeable batteries and data transmission using Bluetooth protocols. Clinical studies involving five patients validate the sensor's ability to detect the presence of CSF flow (P = 0.012) and further distinguish between baseline flow, diminished flow, and distal shunt failure. Last, we demonstrate processing algorithms to translate measured data into quantitative flow rate. The sensor designs, fabrication schemes, wireless architectures, and patient trials reported here represent an advance in hydrocephalus diagnostics with ability to visualize flow in a simple, user-friendly mode, accessible to the physician and patient alike.


Assuntos
Derivações do Líquido Cefalorraquidiano , Epiderme/fisiologia , Hidrocefalia/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Reologia , Incerteza
3.
Small ; 14(47): e1803192, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369049

RESUMO

Precise, quantitative measurements of the thermal properties of human skin can yield insights into thermoregulatory function, hydration, blood perfusion, wound healing, and other parameters of clinical interest. The need for wired power supply systems and data communication hardware limits, however, practical applicability of existing devices designed for measurements of this type. Here, a set of advanced materials, mechanics designs, integration schemes, and wireless circuits is reported as the basis for wireless, battery-free sensors that softly interface to the skin to enable precise measurements of its temperature and thermal transport properties. Calibration processes connect these parameters to the hydration state of the skin, the dynamics of near-surface flow through blood vessels and implanted catheters, and to recovery processes following trauma. Systematic engineering studies yield quantitative metrics in precision and reliability in real-world conditions. Evaluations on five human subjects demonstrate the capabilities in measurements of skin hydration and injury, including examples of continuous wear and monitoring over a period of 1 week, without disrupting natural daily activities.


Assuntos
Eletrônica/métodos , Pele/metabolismo , Tecnologia sem Fio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...