Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(18): e202304097, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38161190

RESUMO

Recently, several ternary phosphidotrielates and -tetrelates have been investigated with respect to their very good ionic conductivity, while less focus was pointed towards their electronic structures. Here, we report on a novel series of compounds, in which several members possess direct band gaps. We investigated the known compounds Li3AlP2, Li3GaP2, Li3InP2, and Na3InP2 and describe the synthesis and the crystal structure of novel Na3In2P3. For all mentioned phosphidotrielates reflectance UV-Vis measurements reveal direct band gaps in the visible light region with decreasing band gaps in the series: Li3AlP2 (2.45 eV), Li3GaP2 (2.18 eV), Li3InP2 (1.99 eV), Na3InP2 (1.37 eV), and Na3In2P3 (1.27 eV). All direct band gaps are confirmed by quantum chemical calculations. The unexpected property occurs despite different structure types. As a common feature all compounds contain EP4 tetrahedra, which share exclusively vertices for E=In and vertices as well as edges for E=Al and Ga. The structure of the novel Na3In2P3 is built up by a polyanionic framework of six-membered rings of corner-sharing InP4 tetrahedra. As a result, the newly designed semiconductors with direct band gaps are suitable for optoelectronic applications, and they can provide significant guidance for the design of new functional semiconductors.

2.
Adv Mater ; 35(1): e2207280, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36217842

RESUMO

Materials enabling solar energy conversion and long-term storage for readily available electrical and chemical energy are key for off-grid energy distribution. Herein, the specific confinement of a rhenium coordination complex in a metal-organic framework (MOF) unlocks a unique electron accumulating property under visible-light irradiation. About 15 C gMOF -1 of electric charges can be concentrated and stored for over four weeks without loss. Decoupled, on-demand discharge for electrochemical reactions and H2 evolution catalysis is shown and light-driven recharging can be conducted for >10 cycles with ≈90% of the initial charging capacity retained. Experimental investigations and theoretical calculations link electron trapping to MOF-induced geometry constraints as well as the coordination environment of the Re-center, highlighting the key role of MOF confinement on molecular guests. This study serves as the seminal report on 3D porous colloids achieving photoaccumulation of long-lived electrons, unlocking dark photocatalysis, and a path toward solar capacitor and solar battery systems.

3.
Adv Mater ; 35(6): e2207380, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394175

RESUMO

Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.

4.
Chem Sci ; 13(41): 12164-12174, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349115

RESUMO

Optimising catalyst materials for visible light-driven fuel production requires understanding complex and intertwined processes including light absorption and catalyst stability, as well as mass, charge, and energy transport. These phenomena can be uniquely combined (and ideally controlled) in porous host-guest systems. Towards this goal we designed model systems consisting of molecular complexes as catalysts and porphyrin metal-organic frameworks (MOFs) as light-harvesting and hosting porous matrices. Two MOF-rhenium molecule hybrids with identical building units but differing topologies (PCN-222 and PCN-224) were prepared including photosensitiser-catalyst dyad-like systems integrated via self-assembled molecular recognition. This allowed us to investigate the impact of MOF topology on solar fuel production, with PCN-222 assemblies yielding a 9-fold turnover number enhancement for solar CO2-to-CO reduction over PCN-224 hybrids as well as a 10-fold increase compared to the homogeneous catalyst-porphyrin dyad. Catalytic, spectroscopic and computational investigations identified larger pores and efficient exciton hopping as performance boosters, and further unveiled a MOF-specific, wavelength-dependent catalytic behaviour. Accordingly, CO2 reduction product selectivity is governed by selective activation of two independent, circumscribed or delocalised, energy/electron transfer channels from the porphyrin excited state to either formate-producing MOF nodes or the CO-producing molecular catalysts.

5.
Angew Chem Int Ed Engl ; 61(8): e202115100, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34825766

RESUMO

Vectorial catalysis-controlling multi-step reactions in a programmed sequence and by defined spatial localization in a microscale device-is an enticing goal in bio-inspired catalysis research. However, translating concepts from natural cascade biocatalysis into artificial hierarchical chemical systems remains a challenge. Herein, we demonstrate integration of two different surface-anchored nanometer-sized metal-organic frameworks (MOFs) in a microfluidic device for modelling vectorial catalysis. Catalyst immobilization at defined sections along the microchannel and a two-step cascade reaction was conducted with full conversion after 30 seconds and high turnover frequencies (TOF≈105  h-1 ).

7.
Faraday Discuss ; 231(0): 281-297, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34240093

RESUMO

Artificial photosystems assembled from molecular complexes, such as the photocatalyst fac-ReBr(CO)3(4,4'-dcbpy) (dcbpy = dicarboxy-2,2'-bipyridine) and the photosensitiser Ru(bpy)2(5,5'-dcbpy)Cl2 (bpy = 2,2'-bipyridine), are a wide-spread approach for solar fuel production. Recently metal-organic framework (MOF) entrapping of such complexes was demonstrated as a promising concept for catalyst stabilisation and reaction environment optimisation in colloidal-based CO2 reduction. Building on this strategy, here we examined the influence of MIL-101-NH2(Al) MOF particle size, the electron donor source, and the presence of an organic base on the photocatalytic CO2-to-CO reduction performance, and the differences to homogeneous systems. A linear relation between smaller scaffold particle size and higher photocatalytic activity, longer system lifetimes for benign electron donors, and increased turnover numbers (TONs) with certain additive organic bases, were determined. This enabled understanding of key molecular catalysis phenomena and synergies in the nanoreactor-like host-guest assembly, and yielded TONs of ∼4300 over 96 h of photocatalysis under optimised conditions, surpassing homogeneous TON values and lifetimes.


Assuntos
Estruturas Metalorgânicas , Catálise , Compostos Orgânicos , Oxirredução , Fármacos Fotossensibilizantes
8.
Angew Chem Int Ed Engl ; 60(33): 17854-17860, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34014024

RESUMO

A strategy to improve homogeneous molecular catalyst stability, efficiency, and selectivity is the immobilization on supporting surfaces or within host matrices. Herein, we examine the co-immobilization of a CO2 reduction catalyst [ReBr(CO)3 (4,4'-dcbpy)] and a photosensitizer [Ru(bpy)2 (5,5'-dcbpy)]Cl2 using the isoreticular series of metal-organic frameworks (MOFs) UiO-66, -67, and -68. Specific host pore size choice enables distinct catalyst and photosensitizer spatial location-either at the outer MOF particle surface or inside the MOF cavities-affecting catalyst stability, electronic communication between reaction center and photosensitizer, and consequently the apparent catalytic rates. These results allow for a rational understanding of an optimized supramolecular layout of catalyst, photosensitizer, and host matrix.

9.
Biotechnol Adv ; 45: 107639, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002583

RESUMO

While DNA's perpetual role in biology and life science is well documented, its burgeoning digital applications are beginning to garner significant interest. As the development of novel technologies requires continuous research, product development, startup creation, and financing, this work provides an overview of each respective area and highlights current trends, challenges, and opportunities. These are supported by numerous interviews with key opinion leaders from across academia, government agencies and the commercial sector, as well as investment data analysis. Our findings illustrate the societal and economic need for technological innovation and disruption in data storage, paving the way for nature's own time-tested, advantageous, and unrivaled solution. We anticipate a significant increase in available investment capital and continuous scientific progress, creating a ripe environment on which DNA data storage-enabling startups can capitalize to bring DNA data storage into daily life.


Assuntos
Armazenamento e Recuperação da Informação , Investimentos em Saúde , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...