Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(26): 262506, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615318

RESUMO

The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data-and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here, we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world data set. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using chiral effective field theory with dynamical Δ(1232) degrees of freedom shows the data are consistent with and within the world data set. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities, and combining them with a recent result for the proton, we obtain the neutron polarizabilities as αn=[11.55±1.25(stat)±0.2(BSR)±0.8(th)]×10(-4) fm(3) and ßn=[3.65∓1.25(stat)±0.2(BSR)∓0.8(th)]×10(-4) fm(3), with χ(2)=45.2 for 44 degrees of freedom.

2.
Phys Rev Lett ; 110(15): 152502, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167256

RESUMO

The second J(π)=2+ state of 12C, predicted over 50 years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(γ,α0)(8)Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an optical time projection chamber. Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly monoenergetic gamma-ray beams at the HIγS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2:2(2)+→0(1)+)=0.73(13)e(2) fm(4) [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha-particle states in 12C. Specifically, it challenges the ab initio lattice effective field theory calculations that predict similar rms radii for the ground state and the Hoyle state.

3.
Phys Rev Lett ; 110(20): 202501, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167400

RESUMO

The first measurement of the three-body photodisintegration of longitudinally polarized (3)He with a circularly polarized γ-ray beam was carried out at the High Intensity γ-ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the (3)He Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.

4.
Phys Rev Lett ; 108(4): 042502, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400829

RESUMO

The two-body photodisintegration cross section of (4)He into a proton and triton was measured with monoenergetic photon beams in 0.5 MeV energy steps between 22 and 30 MeV. High-pressure (4)He-Xe gas scintillators of various (4)He/Xe ratios served as targets and detectors. Pure Xe gas scintillators were used for background studies. A NaI detector together with a plastic scintillator paddle was employed for determining the incident photon flux. Our comprehensive data set follows the trend of the theoretical calculations of the Trento group very well, although our data are consistently lower in magnitude by about 5%. However, they differ significantly from the majority of the previous data, especially from the recent data of Shima et al. The latter data had put into question the validity of theoretical approaches used to calculate core-collapse supernova explosions and big-bang nucleosynthesis abundances of certain light nuclei.


Assuntos
Raios gama , Hélio/química , Trítio/química , Modelos Químicos , Processos Fotoquímicos , Radioatividade , Xenônio/química
5.
Phys Rev Lett ; 97(21): 212001, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17155738

RESUMO

The mean square polarizability radii of the proton have been measured for the first time in a virtual-Compton-scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2 = 0.057 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. The data support the dominance of mesonic effects in the polarizabilities.

6.
Phys Rev Lett ; 94(2): 022003, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15698166

RESUMO

We report new precise H(e,e(')p)pi(0) measurements at the Delta(1232) resonance at Q(2)=0.127 (GeV/c)(2) obtained at the MIT-Bates out-of-plane scattering facility which are particularly sensitive to the transverse electric amplitude (E2) of the gamma(*)N-->Delta transition. The new data have been analyzed together with those of earlier measurements to yield precise quadrupole to dipole amplitude ratios: Re(E(3/2)(1+)/M(3/2)(1+))=(-2.3+/-0.3(stat+syst)+/-0.6(model))% and Re(S(3/2)(1+)/M(3/2)(1+))=(-6.1+/-0.2(stat+syst)+/-0.5(model))% for M(3/2)(1+)=(41.4+/-0.3(stat+syst)+/-0.4(model))(10(-3)/m(pi(+))). The derived amplitudes give credence to the conjecture of deformation in hadrons favoring, at low Q2, the dominance of mesonic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA